Respiration: Taxation Without Representation?

  • Richard J. Geider
Part of the Environmental Science Research book series (ESRH, volume 43)


The role of phytoplankton respiration under conditions where mixed layer depth (zmix) exceeds euphotic zone depth (zeu) and phytoplankton growth is light-limited is well established. Sverdrup (1952) demonstrated the importance of respiration in determining the onset of the spring bloom and Wofsy (1983) considered the balance between respiration and photosynthesis in determining phytoplankton abundance in turbid waters. In stably stratified waters where zmix < zeu, algal respiration is often considered to be small relative to gross photosynthesis, and has been largely neglected as a potential sink for primary production. Microbial loop processes are thought to dominate remineralization of organic matter under conditions of stable phytoplankton abundance in a stably stratified euphotic zone (Frost, 1987; Fasham et al., 1990).


Particulate Organic Carbon Mitochondrial Respiration Phytoplankton Growth Dark Respiration Alternative Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amthor, J. S., 1984, The role of maintenance respiration in plant growth, Plant Cell Environ., 7:561.Google Scholar
  2. Atkinson, D. E., 1977, Cellular energy metabolism and its regulation, Academic Press, New York.Google Scholar
  3. Badger, M. R., 1985, Photosynthetic oxygen exchange, Ann. Rev. Plant Physiol., 36:27.Google Scholar
  4. Bannister, T. T., 1979, Quantitative description of steady-state, nutrient-saturated algal growth, including adaptation, Limnol. Oceanogr., 24:79.Google Scholar
  5. Bannister, T. T., and Laws, E. A., 1980, Modeling phytoplankton carbon metabolism, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  6. Bate, C., Süeltemeyer, D. F., and Fock, H. P., 1988, 16O2/18O2 analysis of oxygen exchange in Dunaliella tertiolecta. Evidence for the inhibition of mitochondrial respiration in the light, Photosynthesis Research, 16:219.Google Scholar
  7. Beardall, J., 1989, Photosynthesis and photorespiration in marine phytoplankton, Aquatic Botany, 34:105.Google Scholar
  8. Bender, M., Grande, K., Johnson, K., Marra, J., Williams, P.J. LeB., Sieburth, J., Pilson, M., Langdon, C., Hitchcock, G., Orchardo, J., Hunt, C., Donaghay, P., and Heinemann, K., 1987, A comparison of four methods for determining planktonic community production, Limnol. Oceanogr., 32:1085.Google Scholar
  9. Bennoun, P., 1982, Evidence for a respiratory chain in the chloroplast, Proc. Natl. Acad. Sci. USA, 79:4352.PubMedGoogle Scholar
  10. Blasco, D., Packard, T. T., and Garfield, P. C., 1982, Size dependence of growth rate, respiratory electron transport system activity, and chemical composition in marine diatoms in the laboratory, J. Phycol., 18:58.Google Scholar
  11. Brackett, F. S., Olson, R. A., and Crickard, R. G., 1953, Respiration and intensity dependence of photosynthesis in Chlorella, J. Gen. Physiol., 36:529.PubMedGoogle Scholar
  12. Brechignac, F., and Andre, M., 1984, Oxygen uptake and photosynthesis of the red macroalga, Chondrus crispus, in seawater, Plant. Physiol., 75:919.PubMedGoogle Scholar
  13. Brechignac, F., and Furbank, R. T., 1987, On the nature of the oxygen uptake in the light by Chondrus crispus, Effects of inhibitors, temperature and light intensity, Photosynthesis Research, 11:45.Google Scholar
  14. Brouwer, K. S., Van Valen, T., Day, D. A., and Lambers, H., 1986, Hydroxamate-stimulated O2 uptake in roots of Pisium sativum and Zea mays, mediated by a peroxidase, Plant Physiol., 82:236.PubMedGoogle Scholar
  15. Brown, A. H., 1953, The effects of light on respiration using isotopically enriched oxygen, Amer. J. Bot., 40:719.Google Scholar
  16. Brown, A. H., and Webster, G. C., 1953, The influence of light on the rate of respiration of the blue-green alga Anabaena, Amer. J. Bot., 40:753.Google Scholar
  17. Burris, J. E., 1980, Respiration and photorespiration in marine algae, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  18. Chavez, F. P., Buck, K. R., and Barber, R. T., 1990, Phytoplankton taxa in relation to primary production in the equatorial Pacific, Deep-Sea Res., 37:1733.Google Scholar
  19. Cuhel, R. L., Ortner, P. B., and Lean, D. R. S., 1984, Night synthesis of protein by algae, Limnol. Oceanogr., 29:731.Google Scholar
  20. Cullen, J. J., and Lewis, M. R., 1988, The kinetics of algal photoadaptation in the context of vertical mixing, J. Plankton Res., 10:1039.Google Scholar
  21. Cullen, J. J., Lewis, M. R., Davis, C. O., and Barber, R. T., 1991, Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific, J. Geophys. Res. (in press).Google Scholar
  22. Elrifi, I. R., and Turpin, D. H., 1987, Short-term physiological indicators of N deficiency in phytoplankton: A unifying model, Mar. Biol., 96:425.Google Scholar
  23. Elthon, T. E., Nickels, R. L., and McIntosh, L., 1989, Monoclonal antibodies to the alternative oxidase of higher plant mitochondria, Plant Physiol., 89:1311.PubMedGoogle Scholar
  24. Emerson, R., 1926, The effect of certain respiratory inhibitors on the respiration of Chlorella, J. Gen. Physiol., 10:469.Google Scholar
  25. Eppley, R. W., Swift, E., Redalje, D. G., Landry, M. R., and Haas, L. W., 1988, Subsurface chlorophyll maximum in August-September 1985 in the CLIMAX area of the North Pacific, Mar. Ecol. Prog. Ser., 42:289.Google Scholar
  26. Falkowski, P. G., Dubinsky, Z., and Santostefano, G., 1985, Light-enhanced dark respiration in phytoplankton, Verh. Internat. Verein. Limnol., 22:2830.Google Scholar
  27. Falkowski, P. G., Dubinsky, Z., and Wyman, K., 1985, Growth-irradiance relationships in phytoplankton, Limnol. Oceanogr., 30:311.Google Scholar
  28. Falkowski, P. G., and Owens, T. G., 1978, Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton, Mar. Biol., 45:289.Google Scholar
  29. Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K., 1991, Role of eddy pumping in enhancing primary production in the ocean, Nature, 352:55.Google Scholar
  30. Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990, A nitrogen-based model of phytoplankton dynamics in the oceanic mixed layer, J. Mar. Res., 48:591.Google Scholar
  31. Fenchel, T., 1982, Ecology of heterotrophic flagellates. II Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8:225.Google Scholar
  32. Foy, R. H., and Smith, R. V., 1980, The role of carbohydrate accumulation in growth of planktonic Oscillatoria species, British Phycol. J., 15:139.Google Scholar
  33. Frost, B. W., 1987, Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp, Mar. Ecol. Prog. Ser., 39:49.Google Scholar
  34. Geider, R. J., 1990, The relationship between steady-state phytoplankton growth and photosynthesis, Limnol. Oceanogr., 35:971.Google Scholar
  35. Geider, R. J., and Osborne, B. A., 1989, Respiration and microalgal growth: A review of the quantitative relationship between dark respiration and growth, New Phytol., 112:327.Google Scholar
  36. Geider, R. J., Osborne, B. A., and Raven, J. A., 1985, Light dependence of growth and photosynthesis in Phaeodactylum tricornutum (Bacillariophyceae), J. Phycol., 21:609.Google Scholar
  37. Geider, R. J., Osborne, B. A., and Raven, J. A., 1986, Growth, photosynthesis and maintenance metabolic cost in the diatom Phaeodactylum tricornutum at very low light levels, J. Phycol., 22:39.Google Scholar
  38. Geider, R. J., Platt, T., and Raven, J. A., 1986, Size dependence of growth and photosynthesis in diatoms: A synthesis, Mar. Ecol. Prog. Ser., 30:93.Google Scholar
  39. Glidewell, S. M., and Raven, J. A., 1975, Measurement of simultaneous oxygen evolution and uptake in Hydrodictyon africanum, J. Exp. Bot., 26:479.Google Scholar
  40. Goericke, 1990, Pigments as ecological tracers for the study of the abundance and growth of marine phytoplankton, PhD. Thesis, Deptartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusettes.Google Scholar
  41. Goyal, A., and Tolbert, N. E., 1989, Variations in the alternative oxidase in Chlamydomonas grown in air or high CO2, Plant Physiol., 89:958.PubMedGoogle Scholar
  42. Graham, D., 1980, Effects of light on ‘dark’ respiration, in: “The Biochemistry of Plants,” Volume 2, D.D. Davies, ed., Academic Press, New York.Google Scholar
  43. Grande, K. D., Marra, J., Langdon, C., Heinemann, K., and Bender, M. L., 1989, Rates of respiration in the light measured in marine phytoplankton using an 18O isotope-labelling technique, J. Exp. Mar. Biol. Ecol., 129:95.Google Scholar
  44. Grande, K. D., Williams, P. J. LeB., Marra, J., Purdie, D. A., Heinemann, K., Eppley, R. W., and Bender, M. L., 1989, Primary production in the North Pacific gyre: A comparison of rates determined by 14C, O2 concentration and 18O methods, Deep-Sea Res., 36:1621.Google Scholar
  45. Grant, N. G., and Hommersand, M. H., 1974, The respiratory chain of Chlorella protothecoides. I. Inhibitor responses and cytochrome components of whole cells, Plant Physiol., 54:50.PubMedGoogle Scholar
  46. Groebellar, J. U., and Soeder, C. J., 1985, Respiration losses in planktonic green algae in raceway ponds, J. Plankton Res., 7:497.Google Scholar
  47. Guy, R. D., Berry, J. A., Fogel, M. L., and Hoering, T. C., 1989, Differential fractionation of oxygen isotopes by cyanide-resistant and cyanide-sensitive respiration in plants, Planta, 177:483.Google Scholar
  48. Hama, T., 1988, 13C-GC-MS analysis of photosynthetic products of the phytoplankton population in the regional upwelling area around the Izu Islands, Japan, Deep-Sea Res., 35:91.Google Scholar
  49. Harris, G.P., 1978, Photosynthesis, productivity and growth: The physiological ecology of phytoplankton, Arch. Hydrobiol., 10:1.Google Scholar
  50. Harris, G. P., and Piccinin, B. B., 1983, Phosphorus limitation and carbon metabolism in a unicellular alga: Interactions between growth rate and the measurement of net and gross photosynthesis, J. Phycol., 19:185.Google Scholar
  51. Healey, F. P., and Myers, J., 1971, The Kok effect in Chlamydomonas reinhardtii. Plant Physiol., 47:373.PubMedGoogle Scholar
  52. Hellebust, J. A., and Lewin, J., 1977, Heterotrophic nutrition, in: “The Biology of Diatoms, Botanical Monographs Volume 13, D. Werner, ed., University of California Press.Google Scholar
  53. Herzig, R., and Falkowski, P. G., 1989, Nitrogen limitation in Isochrysis galbana (Haptophyceae), I. Photosynthetic energy conversion and growth efficiencies, J. Phycol., 25:462.Google Scholar
  54. Hirano, M., Satoh, K., and Katoh, S., 1980, Plastoquinone as a common link between photosynthesis and respiration in a blue-green alga, Photosynthesis Res., 1:149.Google Scholar
  55. Hoch, G., Owens, O. V. H., and Kok, B., 1963, Photosynthesis and respiration, Arch. Biochem. Biophys., 101:171.PubMedGoogle Scholar
  56. Hochachka, P. W., and Teal, J. M., 1964, Respiratory metabolism in a marine dinoflagellate, Biol. Bull., 126:214.Google Scholar
  57. Humphrey, T. J., and Davies, D. D., 1975, A new method for the measurement of protein turnover, Biochem. J., 148:274.Google Scholar
  58. Humphrey, T. J., and Davies, D. D., 1976, A sensitive method for measuring protein turnover based on the measurement of 2-3H labelled amino acids in protein, Biochem. J., 156:561.PubMedGoogle Scholar
  59. Jones, L. W., and Myers, J., 1963, A common link between photosynthesis and respiration in a blue-green alga, Nature, 199:670.PubMedGoogle Scholar
  60. Kenner, R. A., and Ahmed, S.I., 1975, Correlation between oxygen utilization and electron transport activity in marine phytoplankton, Mar. Biol., 33:129.Google Scholar
  61. Kiefer, D. A., and Mitchell, B. G., 1983, A simple, steady-state description of phytoplankton growth based on absorption cross-section and quantum efficiency, Limnol. Oceanogr., 28:770.Google Scholar
  62. Lambers, H., 1985, Respiration in intact plants and tissues: Its regulation and dependence on environmental factors, metabolism and invaded organisms, in: “Higher plant cell respiration,” R. Douce, and D.A. Day, eds., Springer-Verlag, Berlin.Google Scholar
  63. Lance, C., Chauveau, M., and Dizengremel, P., 1985, The cyanide-resistant pathway of plant mitochondria, in: “Higher plant cell respiration,” R. Douce, and D.A. Day, eds., Springer-Verlag, Berlin.Google Scholar
  64. Lancelot, C., and Mathot, S., 1985, Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short-and long-term incubations with 14C-bicarbonate, Mar. Biol., 86:219.Google Scholar
  65. Lancelot, C., Mathot, S., and Owens, N. J. P., 1986, Modelling protein synthesis, a step to an accurate estimate of net primary production: Phaeocystis pouchetii colonies in Belgian coastal waters, Mar. Ecol. Prog. Ser., 32:193.Google Scholar
  66. Landry, M. R., Haas, L. W., and Fagerness, V. L., 1984, Dynamics of microbial plankton communities: Experiments in Kaneohe Bay, Hawaii, Mar. Ecol. Prog. Ser., 16:127.Google Scholar
  67. Laws, E. A., and Bannister, T. T., 1980, Nutrient-and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean, Limnol. Oceanogr., 25:457.Google Scholar
  68. Laws, E. A., and Caperon, J., 1976, Carbon and nitrogen metabolism by Monochrysis lutheri: Measurement of growth-rate-dependent respiration rates, Mar. Biol., 36:85.Google Scholar
  69. Laws, E. A., DiTullio, G. R., and Redalje, D. G., 1987, High phytoplankton growth and production rates in the North Pacific subtropical gyre, Limnol. Oceanogr., 34:905.Google Scholar
  70. Laws, E. A., Jones, D. R., Terry, K. L., and Hirata, J.A., 1985, Modifications in recent models of phytoplankton growth: Theoretical developments and experimental examination of predictions, J. Theor. Biol., 114:323.Google Scholar
  71. Laws, E. A., and Wong, D. C. L., 1978, Studies of carbon and nitrogen metabolism by three marine phytoplankton species in nitrate-limited continuous culture, J. Phycol., 14:406.Google Scholar
  72. Li, W. K. W., and Dickie, P. M., 1991, Light and dark 14C uptake in dimly-lit oligotrophic waters: relation to bacterial activity, J. Plankton Res., 13:29.Google Scholar
  73. Li, W. K. W., and Goldman, J. C., 1980, Problems in estimating growth rates of phytoplankton from short term 14C assays, Microb. Ecol., 7:113.Google Scholar
  74. Li, W. K. W., and Harrison, W. G., 1982, Carbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton population, Mar. Biol., 72:175.Google Scholar
  75. Miller, M. G., and Obendorf, R. L., 1981, Use of tetraethylthiuram disulfide to discriminate between alternative respiration and lipoxygenase, Plant Physiol., 67:962.PubMedGoogle Scholar
  76. Møller, I. A., Bérczi, A., van der Plas, L. H. W., and Lambers, H., 1988, Measurement of the activity and capacity of the alternative pathway in intact plant tissues: Identification of problems and possible solutions, Physiologia Plantarum, 72:642.Google Scholar
  77. Mortain-Bertrand, A., Descolas-Gros, C., and Jupin, H., 1988, Pathway of dark inorganic carbon fixation in two species of diatoms: Influence of light regime and regulator factors on diel variations, J. Plankton Res., 10:199.Google Scholar
  78. Myers, J., 1947, Oxidative assimilation in relation to photosynthesis in Chlorella, J. Gen Physiol., 32:103.Google Scholar
  79. Myers, J., and Graham, J. R., 1971, The photosynthetic unit in Chlorella measured by repetitive short flashes, Plant Physiol, 28:282.Google Scholar
  80. Osmond, C. B., 1981, Photorespiration and photoinhibition: Some implications for the energetics of photosynthesis, Biochim. Biophys. Acta, 639:77.Google Scholar
  81. Osborne, B. A., and Geider, R. J., 1986, Effect of nitrate-nitrogen limitation on photosynthesis of the diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae), Plant Cell Environ., 9:617.Google Scholar
  82. Oudot, C., 1989, O2 and CO2 balances approach for estimating biological production in the mixed layer of the tropical Atlantic Ocean (Guinea Dome area), J. Mar. Res., 47:385.Google Scholar
  83. Packard, T. T., 1985, Measurement of electron transport activity of microplankton, Adv. Aquat. Microbiol., 3:207.Google Scholar
  84. Parsons, T. R., Takakashi, M., and Hargrave, B., 1984, Biological Oceanographic Processes, 3rd Edition, Pergamon Press, New York.Google Scholar
  85. Peltier, G., Ravenel, J. and Verméglio, A., 1987, Inhibition of a respiratory activity by short saturating flashes in Chlamydonomas: Evidence for a chlororespiration, Biochimica et Biophysica Acta, 893:83.Google Scholar
  86. Peltier, G., and Sarrey, F., 1988, The Kok effect and light-inhibition of chlororespiration in Chlamydomonas reinhardtii, FEBS Lett., 228:259.Google Scholar
  87. Peltier, G., and Thibault, P., 1985, O2 uptake in the light in Chlamydomonas, Evidence for persistent mitochondrial respiration, Plant. Physiol., 79:225.PubMedGoogle Scholar
  88. Penning de Vries, F. W. T., 1975, The cost of maintenance processes in plant cells, Ann. Bot., 39:77.Google Scholar
  89. Penning de Vries, F. W. T., Brunsting, A. H. M., and van Laar, H. H., 1974, Products, requirements and efficiency of biosynthesis: A quantitative approach, J. theor. Biol., 45:339.Google Scholar
  90. Pennock, J. R., 1987, Temporal and spatial variability in phytoplankton ammonium and nitrate uptake in the Delaware estuary, Est. Coastal Shelf Sci., 24:2.Google Scholar
  91. Pickett, J. M., 1975, Growth of Chlorella in a nitrate-limited chemostat, Plant Physiol., 55:223.PubMedGoogle Scholar
  92. Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy sufficient growth, Arch. Microbiol., 133:300.PubMedGoogle Scholar
  93. Pirt, S. J., 1986, The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth, New Phytol., 102:3.Google Scholar
  94. Post, A. F., Loogman, J. G., and Mur, L. R., 1985, Regulation of growth and photosynthesis by Oscillatoria agardhii grown with a light/dark cycle, FEMS Microbial Ecology, 31:97.Google Scholar
  95. Postma, H., and Rommets, J. W., 1979, Dissolved and particulate organic carbon in the North Equatorial Current of the Atlantic Ocean, Neth. J. Sea Res., 13:85.Google Scholar
  96. Raven, J. A., 1976, Division of labour between chloroplast and cytoplasm, in: “The Intact Chloroplast,11 J. Barber, ed., Elsevier/North Holland Biomédical Press.Google Scholar
  97. Raven, J. A., 1984, “Energetics and transport in aquatic plants,” Alan R. Liss, Inc., New York.Google Scholar
  98. Raven, J. A., and Beardall, J., 1981, Respiration and photorespiration, Can. Bull. Fish. Aquat. Sci., 210:55.Google Scholar
  99. Richards, L., and Thurston, C. F., 1980, Protein turnover in Chlorella fusca var. vacuolata: Measurement of the overall rate of intracellular protein degradation using isotopic exchange with water, J. Gen. Microbiol., 121:49.Google Scholar
  100. Ryther, J. H., 1954, The ratio of photosynthesis to respiration in marine plankton algae and its effect upon the measurement of productivity, Deep Sea Res., 2:134.Google Scholar
  101. Ryther, J. H., 1956, Interrelation between photosynthesis and respiration in the marine flagellate Dunaliella euchlora, Nature, 178:861.Google Scholar
  102. Sakshaug, E., Andresen, K., and Kiefer, D. A., 1989, A steady state description of growth and light absorption in the marine planktonic diatom, Skeletonema costatum. Limnol. Oceanogr., 34:198.Google Scholar
  103. Sargent, D. F., and Taylor, C. P. S., 1972, Terminal oxidases of Chlorella pyrenoidosa, Plant Physiol., 49:775.PubMedGoogle Scholar
  104. Shuter, B., 1979, A model of physiological adaptation in unicellular algae, J. Theor. Biol., 78:519.PubMedGoogle Scholar
  105. Siegel, D. A., Dickey, T. D., Washburn, L., Hamilton, M. K., and Mitchell, B. G., 1989, Optical determination of particulate abundance and production variations in the oligotrophic ocean, Deep-Sea Res., 36:211.Google Scholar
  106. Smayda, T. J., and Mitchell-Innes, B., 1974, Dark survival of autotrophic planktonic diatoms, Mar. Biol., 25:195.Google Scholar
  107. Smith, R. E. H., Geider, R. J., and Platt, T., 1984, Microplankton productivity in the oligotrophic ocean, Nature, 311:252.Google Scholar
  108. Steemann Nielsen, E., 1955, The interaction of photosynthesis and respiration and its importance for the determination of 14C-discrimination in photosynthesis, Physiol. Plant., 8:945.Google Scholar
  109. Süeltemeyer, D. F., Klug, K., and Fock, H. P., 1986, Effect of photon fluence rate on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions grown in ambient and CO2-enriched air, Plant Physiol., 81:372.PubMedGoogle Scholar
  110. Sverdrup, H. U., 1952, On conditions for the vernal blooming of phytoplankton, J. Cons. Explor. Mer., 18:287.Google Scholar
  111. Syrett, P.J., 1951, The effect of cyanide on respiration and the oxidative assimilation of glucose by C. vulgaris, Ann. Bot., 15:473.Google Scholar
  112. Syrett, P.J., 1953, The assimilation of ammonium by nitrogen-starved cells of Chlorella vulgaris, Part 1. The correlation of assimilation with respiration, Ann. Bot., 17:1.Google Scholar
  113. Syrett, P.J., 1956, The assimilation of ammonium by nitrogen-starved cells of Chlorella vulgaris 4, The dark fixation of carbon dioxide, PhysioL Plant., 9:165.Google Scholar
  114. Syrett, P.J. and Fowden, L., 1952, The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris, Part 3. The effect of the addition of glucose on the products of assimilation, Physiol. Plant., 5:558.Google Scholar
  115. Taguchi, S., Ditullio, G. R., and Laws, E. A., 1988, Physiological characteristics and production of mixed layer and chlorophyll maximum phytoplankton populations in the Caribbean Sea and western Atlantic Ocean, Deep-Sea Res., 35:1363.Google Scholar
  116. Tempest, D. W., and Neijssel, O. M., 1984, The status of YATP and maintenance energy as biologically interpretable phenomena, Ann. Rev. Microbiol., 38:459.Google Scholar
  117. Tijssen, S. B., 1979, Diurnal oxygen rhythm and primary production in the mixed layer of the Atlantic Ocean at 20 °N, Neth. J. Sea. Res., 13:79.Google Scholar
  118. Tijssen, S. B., and Eijgenraam, A., 1982, Primary and community production in the southern bight of the North Sea deduced from oxygen concentration variations in the spring, 1980, Neth. J. Sea. Res., 16:247.Google Scholar
  119. Underhill, P. A., 1981, Steady-state growth rate effects on the photosynthetic carbon budget and chemical composition of a marine diatom, Ph.D. Dissertation, University of Delaware.Google Scholar
  120. Van Leire, L., and Mur, L. R., 1979, Growth kinetics of Oscillatoria agardhii Gomont in continuous culture, limited in its growth by the light energy supply, J. Gen. Microbiol., 115:153.Google Scholar
  121. Vanlerberghe, G. C., Schuller, K. A., Smith, R. G., Feil, R., Plaxton, W. C., and Turpin, D. H., 1990, Relationship between NH4 + assimilation rate and in vivo phosphoenolpyruvate carboxylase activity, Plant Physiol., 94:284.PubMedGoogle Scholar
  122. Varum, K. M., Ostgaard, K., and Grimsrud, K., 1986, Diurnal rhythms in carbohydrate metabolism of the marine diatom Skeletonema costatum (Grev.) Cleve, J. Exp. Mar. Biol. Ecol., 102:249.Google Scholar
  123. Verity, P. G., 1982, Effects of temperature, irradiance and day length on the marine diatom Skeletonema costatum (Grev.) Cleve. IV. Growth, J. Exp. Mar. Biol. Ecol., 60:209.Google Scholar
  124. Webster, D. A., and Hackett, D. P., 1965, Respiratory chain of colorless algae. I. Chlorophyta and Euglenophyta, Plant Physiol., 40:1091.PubMedGoogle Scholar
  125. Webster, D. A., and Hackett, D. P., 1966, Respiratory chain of colorless algae, II. Cyanophyta, Plant Physiol., 41:599.PubMedGoogle Scholar
  126. Weger, H. G., Birch, D. G., Elrifi, I. R., and Turpin, D. H., 1988, Ammonium assimilation requires mitochondrial respiration in the light, Plant Physiol., 86:688.PubMedGoogle Scholar
  127. Weger, H. G., Guy, R. D., and Turpin, D. H., 1990, Cytochrome and alternative pathway respiration in green algae, Plant Physiol., 93:356.PubMedGoogle Scholar
  128. Weger, H. G., Herzig, R., Falkowski, P. G., and Turpin, D. H., 1989, Respiratory losses in the light in a marine diatom: Measurements by short-term mass spectrometry, Limnol. Oceanogr., 34:1153.Google Scholar
  129. Weger, H. G., and Turpin, D. H., 1989, Mitochondrial respiration can support NO3 and NO2 reduction during photosynthesis, Plant Physiol., 89:409.PubMedGoogle Scholar
  130. Williams, P. J. LeB., Heinemann, K. R., Marra, J., and Purdie, D. A., 1983, Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters, Nature, 305:49.Google Scholar
  131. Wiskich, J. T., and Dry, I. B., 1985, The tricarboxylic acid cycle in plant mitochondria: Its operation and regulation, in: “Higher Plant Cell Respiration,” R. Dounce and D.A. Day, eds., Springer-Verlag, New York.Google Scholar
  132. Wofsy, S. C., 1983, A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters, Limnol. Oceanogr., 28:1144.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Richard J. Geider
    • 1
  1. 1.College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations