New Production and the Global Carbon Cycle

  • Jorge L. Sarmiento
  • Ulrich Siegenthaler
Part of the Environmental Science Research book series (ESRH, volume 43)


The export of newly produced organic carbon from the surface ocean and its regeneration at depth account for an estimated three-quarters of the vertical ΣCO2 gradient shown in Fig. 1 (Volk and Hoffert, 1985). If these processes, often referred to as the “biological pump,” had ceased operating during the pre-industrial era, the increase in surface ΣCO2 resulting from upward mixing of high ΣCO2 deep waters would have raised atmospheric pCO2 from 280 ppm to the order of 450 ppm (Sarmiento and Toggweiler, 1984) over a period of centuries. Vertical exchange, which gives an estimated upward flux of 100 GtC/yr (Fig. 2), works continuously to bring about just such a scenario. The biological pump prevents it by stripping out about 10 GtC/yr, so that the water arriving at the surface has a concentration equal to that which is already there.


Southern Ocean Deep Water Formation Biological Pump Anthropogenic Perturbation Organic Carbon Burial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacastow, R., and Maier-Reimer, E., 1991, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles, 5:71.CrossRefGoogle Scholar
  2. Barnola, J. M., Raynaud, D., Kortkevich, Y.S., and Lorius, C., 1987, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329:408.CrossRefGoogle Scholar
  3. Boyle, E. A., 1988, The role of vertical fractionation in controlling Late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93:15701.CrossRefGoogle Scholar
  4. Brewer, P. G., Broecker, W. S., Jenkins, W. J., Rhines, P.B., Rooth, C.G., Swift, J.H., Takahashi, T., and Williams, R.T., 1983, A climatic freshening of the deep Atlantic north of 50°N over the past 20 years, Science, 222:1237.PubMedCrossRefGoogle Scholar
  5. Broecker, W. S., and Denton, G.H., 1989, The role of ocean-atmosphere reorganizations in glacial cycles, Geochim. Cosmochim. Acta, 53:2465.CrossRefGoogle Scholar
  6. Broecker, W. S., and Peng, T.-H., 1982, Tracers in the Sea, Eldigio Press, Palisades, New York.Google Scholar
  7. Broecker, W. S., and Peng, T.-H., 1989, The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochem. Cycles, 3:215.CrossRefGoogle Scholar
  8. Broecker, W. S., and Takahashi, T., 1977, Neutralization of fossil fuel CO2 by marine calcium carbonate, In, “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen and A. Malahoff, eds., Plenum Publishing Corp., New York.Google Scholar
  9. Enting, I. G., and Mansbridge, J. V., 1991, Latitudinal distribution of sources and sinks of CO2: Results of an inversion study, Tellus, 43B:156.Google Scholar
  10. Eppley, R. W., 1989, New Production: History, Methods, Problems, In:, “Productivity of the Ocean: Present and Past”, W. H. Berger, W.S. Smetacek, G. Wefer, and J. Wiley and Sons, eds., New York.Google Scholar
  11. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.CrossRefGoogle Scholar
  12. Falkowski, P. G., Flagg, C. N., Rowe, G. T., Smith, S. L., Whitledge, T.E., and Wirick, C.D., 1988, The fate of a spring phytoplankton bloom: Export or oxidation?, Cont. Shelf Res., 8:457.CrossRefGoogle Scholar
  13. Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B., 1986, Ice core record of the 13C/12C ratio of atmospheric carbon dioxide in the past two centuries, Nature, 324:237.CrossRefGoogle Scholar
  14. Gordon, A. L.,1988, Spatial and temporal variability within the Southern Ocean, In: “Antarctic Ocean and Resources Variability,” D. Sahrhage, ed., Springer-Verlag Berlin Heidelberg.Google Scholar
  15. Hardy, J., and Gucinski, H., 1989, Stratospheric ozone depletion: Implications for marine ecosystems, Oceanography, 2:18.CrossRefGoogle Scholar
  16. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J., 1990, Climate Change, The IPCC Scientific Assessment, Cambridge U. Press.Google Scholar
  17. Joos, F., Sarmiento, J. L., and Siegenthaler, U., 1991, Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations, Nature, 349:772.CrossRefGoogle Scholar
  18. Keeling, C.D., 1968, Carbon dioxide in surface ocean waters, 4, Global distribution, J. Geophys. Res., 73:4543.CrossRefGoogle Scholar
  19. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H., 1989a, A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data, In: “Aspects of Climate Variability in the Pacific and the Western Americas,” D.H. Peterson, ed., Geophysical Monograph 55, American Geophysical Union Washington (USA).Google Scholar
  20. Keeling, C. D., Piper, S.C., and Heimann, M., 1989b, A three dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations, In: “Aspects of Climate Variability in the Pacific and the Western Americas,” D. H. Peterson, ed., Geophysical Monograph 55, American Geophysical Union Washington (USA), pp. 305-363.Google Scholar
  21. Knox, F., and McElroy, M., 1984, Changes in atmospheric CO2: Influence of the marine biota at high latitudes, J. Geophys. Res., 89:4629.CrossRefGoogle Scholar
  22. Liss, P., and Merlivat, L., 1986, Air-sea exchange rates, introduction and synthesis, In, “The Role of Air-Sea Exchange in Geochemical Cycling,” P. Buat-Menard, ed., D. Reidel Publ. Co., Dordrecht.Google Scholar
  23. Maier-Reimer, E., and Hasselmann, K., 1987, Transport and storage of CO2 in the ocean — an inorganic ocean-circulation cycle model, Climate Dyn., 2:63.CrossRefGoogle Scholar
  24. Najjar, R. G., 1990, Simulations of the phosphorus and oxygen cycles in the world ocean using a general circulation model, Ph.D. Thesis, Princeton University, Princeton, New Jersey.Google Scholar
  25. Neftel, A., E. Moor, H. Oeschger, and B. Stauffer, 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315:4.CrossRefGoogle Scholar
  26. Peng, T.-H., and Broecker, W. S., 1991, Dynamic limitations on the Antarctic iron fertilization strategy, Nature, 349:227.CrossRefGoogle Scholar
  27. Raven, J. A., 1991, Implications of inorganic C utilization: Ecology, evolution and geochemistry, Can. J. Bot., 69:203.CrossRefGoogle Scholar
  28. Sabine, C. L., and Mackenzie, F. T., 1991, Oceanic sinks for anthropogenic CO2, International journal of Energy Environment Economics, 1:119.Google Scholar
  29. Sarmiento, J. L., and Orr, J.C., 1991, Three dimensional ocean model simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry, Limnol. Oceanogr., in press.Google Scholar
  30. Sarmiento, J. L., and Sundquist, E., 1991, River and ocean sediment carbon fluxes play a major role in the oceanic anthropogenic CO2 budget, In preparation.Google Scholar
  31. Sarmiento, J. L., Orr, J. C., and Siegenthaler, U., 1991, A perturbation simulation of CO2 uptake in an ocean general circulation model, J. Geophys. Res., in press.Google Scholar
  32. Sarmiento, J. L., and Toggweiler, J. R., 1984, A new model for the role of the oceans in determining atmospheric pCO2, Nature, 308:621.CrossRefGoogle Scholar
  33. Schluessel, P., Emery, W. J., Grassl, H., and Mammen, T., 1990, On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature, J. Geophys. Res., 95:13341.CrossRefGoogle Scholar
  34. Siegenthaler, U., and Wenk, T., 1984, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308:624.CrossRefGoogle Scholar
  35. Siegenthaler, U., and Oeschger, H., 1978, Predicting future atmospheric carbon dioxide levels, Science, 199:388.PubMedCrossRefGoogle Scholar
  36. Siegenthaler, U., and Oeschger, H., 1987, Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, 39B:140.CrossRefGoogle Scholar
  37. Siegenthaler, U., Friedli, H., LÜtscher, H., Moor, E., Neftel, A., Oeschger, H., and Stauffer, B., 1988, Stable-isotope ratios and concentration of CO2 in air from polar ice cores, Annals of Glaciology, 10:1.Google Scholar
  38. Smith, R. C., and Baker, K.S., 1979, Penetration of UV-B and biologically effective dose-rates in natural waters, Photochem. Photobiol., 32:367.Google Scholar
  39. Stauffer, B., Hofer, H. Oeschger, H., Schwander, J., and Siegenthaler, U., 1984, Atmospheric CO2 concentration during the last glaciation, Annals of Glaciaology, 5:160.Google Scholar
  40. Sugimura, Y., and Suzuki, Y., 1988, A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample, Marine Chemistry, 24:105.CrossRefGoogle Scholar
  41. Suzuki, Y., Sugimura, Y., and Itoh, T., 1985, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Marine Chemistry, 16:83.CrossRefGoogle Scholar
  42. Tans, P. P., Fung, I. Y., and Takahashi, T., 1990, Observational constraints on the global atmospheric CO2 budget, Science, 247:1431.PubMedCrossRefGoogle Scholar
  43. Toggweiler, J. R., 1989, Is the downward dissolved organic matter (DOM) flux important in carbon transport?, In: “Productivity of the ocean: Past and Present,” W. H. Berger, V. Smetacek, and D. Wefer, eds., Dahlem Workshop Report, John Wiley and Sons, Chichester.Google Scholar
  44. UNESCO, 1991, Report of the Second Session of the Joint JGOFS-CCCO Panel on Carbon Dioxide, April 1991, Paris.Google Scholar
  45. Venrick, E. L., McGowan, J. A., Cayan, D. R., and Hayward, T. L., 1987, Climate and chlorophyll a: Long-term trends in the Central North Pacific Ocean, Science, 238:70.PubMedCrossRefGoogle Scholar
  46. Volk, T., and Hoffert, M. I., 1985, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, In: “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present,” E. Sundquist and W. S. Broecker, eds., Geophysical Monograph 32, American Geophysical Union.Google Scholar
  47. Volk, T., and Liu, Z., 1988, Controls of CO2 sources and sinks in the earth scale surface ocean: Temperature and nutrients, Global Biogeochem. Cycles, 2:73.CrossRefGoogle Scholar
  48. Walsh, J. J., 1989, How much shelf production reaches the deep sea?, In: “Productivity of the Ocean: Present and Past,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  49. Watson, A. J., Robinson, C., Robinson, J. E., Williams, P. J. leB., and Fasham, M. J. R., 1991, Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic, Nature, 350:50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jorge L. Sarmiento
    • 1
  • Ulrich Siegenthaler
    • 2
  1. 1.Program in Atmospheric and Ocean SciencesPrinceton UniversityPrincetonUSA
  2. 2.Physics InstituteUniversity of BernBernSwitzerland

Personalised recommendations