Tracer Based Inferences of New Primary Production in the Sea

  • W. J. Jenkins
  • D. W. R. Wallace
Part of the Environmental Science Research book series (ESRH, volume 43)


Much of what we have learned about the oceans, particularly in the early decades of this century, stems from inferences drawn from the distribution of properties in the ocean. The pioneers of oceanography used observations of first, temperature and salinity, and then passive, nonconservative tracers, such as oxygen and dissolved nutrients to deduce the origins, pathways, and fates of water masses. The development of the dynamical methods further placed broad constraints on the rates of the processes involved. Recently, measurement of transient tracers, ie. the distributions of those substances resulting from human activities, which are changing with time, coupled with better knowledge of the “classical” tracer distributions and the advent of sophisticated numerical models, is leading to a more quantitative and complete understanding of the ocean circulation and ventilation. The quantification of these physical processes enables us to estimate the rates of biogeochemical processes in the ocean.


Euphotic Zone Subtropical Gyre Nitrate Flux Apparent Oxygen Utilization Main Thermocline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altabet, M. A., 1989, Paniculate new nitrogen fluxes in the Sargasso Sea, J. Geophys. Res., 94:12771.CrossRefGoogle Scholar
  2. Brundage, W. L., and Dugan, J. P., 1986, Observations of an anticyclonic eddy of 18°C water in the Sargasso Sea, J. Phys. Oceanogr., 16:717.CrossRefGoogle Scholar
  3. Chou, J. Z., 1985, Numerical modelling of oxygen cycling in the upper ocean, WHOI-SSF, report No. 42.Google Scholar
  4. Craig, H., and Hayward, T., 1987, Oxygen supersaturation in the ocean: biological versus physical contributions, Science, 235:199.PubMedCrossRefGoogle Scholar
  5. Doney, S. C., and Bullister, J. L., 1991, A chlorofluorocarbon section in the eastern North Atlantic, Deep-Sea Res., in press.Google Scholar
  6. Doney, S. C., and Jenkins, W. J., 1988, The effect of boundary conditions on tracer estimates of thermocline ventilation rates, J. Marine Res., 46:947.CrossRefGoogle Scholar
  7. Emerson, S., 1987, Seasonal oxygen cycles and biological new production in surface waters of the subarctic Pacific Ocean, J. Geophys. Res., 92:6535.CrossRefGoogle Scholar
  8. Falkowski, P., Zeimann, D., Kolber, Z., and Bienfang, P. K., 1991, Role of eddy pumping in enhancing primary production in the ocean, Nature, 352:55.CrossRefGoogle Scholar
  9. Garrett, C., 1979, Mixing in the ocean interior, Dyn. Atm. Oceans, 3:239.CrossRefGoogle Scholar
  10. Jenkins, W. J., 1977, Tritium-helium dating in the Sargasso Sea: a measurement of oxygen utilization rates, Science, 196:291.PubMedCrossRefGoogle Scholar
  11. Jenkins, W. J., 1980, Tritium and 3He in the Sargasso Sea, J. Mar. Res., 38:533.Google Scholar
  12. Jenkins, W. J., 1982a, Oxygen utilization rates in the North Atlantic Subtropical Gyre and primary production in oligotrophic systems, Nature, 300:246.CrossRefGoogle Scholar
  13. Jenkins, W. J., 1982b, On the climate of a subtropical ocean gyre: decade time-scale variations in water mass renewal in the Sargasso Sea, J. Mar. Res., 40(supp):265.Google Scholar
  14. Jenkins, W. J., 1987, 3H and 3He in the Beta Triangle: observations of gyre ventilation and oxygen utilization rates, J. Phys. Oceanogr., 17:763.CrossRefGoogle Scholar
  15. Jenkins, W. J., 1988a, The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation, Phil. Trans. R. Soc. Lond. A, 325:43.CrossRefGoogle Scholar
  16. Jenkins, W. J., 1988b, Nitrate flux into the euphotic zone near Bermuda, Nature, 331:521.CrossRefGoogle Scholar
  17. Jenkins, W. J., and Goldman, J. C., 1985, Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Mar. Res., 43:465.CrossRefGoogle Scholar
  18. Laws, E. A., 1991, Photosynthetic quotients, new production and net community production in the open ocean, Deep-Sea Res., 38:143.CrossRefGoogle Scholar
  19. Lewis, M. R., Harrison, W. G., Oakey, N. S., Hebert, D., and Platt, T., 1986, Vertical nitrate fluxes in the oligotrophic ocean, Science, 234:870.PubMedCrossRefGoogle Scholar
  20. Liss, P. S., and Merlivat, L., 1986, Air-sea gas exchange rates: introduction and synthesis, in: “The Role of Air-Sea Exchange in Geochemical Cycling,” P. Buat-Menard, ed., Reidel Publ. Co.Google Scholar
  21. McGowan, J. A., and Hayward, T. L., 1978, Mixing and oceanic productivity, Deep-Sea Res., 25:771.CrossRefGoogle Scholar
  22. Megard, R. O., Berman, T., Curtis, P. J., and Vaughan, P. W., 1985, Dependence of phytoplankton assimilation quotients on light and nitrogen source: implications for oceanic primary productivity, J. Plankt. Res., 7:691.CrossRefGoogle Scholar
  23. Musgrave, D. L., Chou, J., and Jenkins, W. J., 1988, Application of a model of upper-ocean physics for studying seasonal cycles of oxygen, J. Geophys. Res., 93:15679.CrossRefGoogle Scholar
  24. Musgrave, D. L., 1990, Numerical studies of tritium and 3He in the thermocline, J. Phys. Oceanogr., 20:344.CrossRefGoogle Scholar
  25. Platt, T., 1984, Primary productivity in the central North Pacific: comparison of oxygen and carbon fluxes, Deep Sea Res., 31:1311.CrossRefGoogle Scholar
  26. Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K. W., Sathyendranath, S., Smith, R. E., and Vezina, A. F., 1989, Biological production of the oceans: The case for a consensus, Mar. Ecol. Prog. Ser., 52:77.CrossRefGoogle Scholar
  27. Price, J. F., Weller, R. A., and Pinkel, R., 1986, Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing, J. Geophys. Res., 91:8411.CrossRefGoogle Scholar
  28. Raine, R. C. T., 1983, The effect of nitrogen supply on the photosynthetic quotient of natural phytoplankton assemblages, Bot. Mar., 26:417.CrossRefGoogle Scholar
  29. Reid, J. L., and Shulenberger, E., 1986, Oxygen saturation and carbon uptake near 28N, 133W, Deep-Sea Res., 33:267.CrossRefGoogle Scholar
  30. Riley, G. A., 1951, Oxygen, phosphate and nitrate in the Atlantic Ocean, Bull. Bingham Oceanogr. Coll., 13:1.Google Scholar
  31. Sarmiento, J. L., 1983, A tritium box model of the North Atlantic thermocline, J. Phys. Oceanogr., 13:1269.CrossRefGoogle Scholar
  32. Sarmiento, J. L., Thiele, G., Key, R. M., and Moore, W. S., 1990, Oxygen and nitrate new production and remineralization in the North Atlantic Subtropical Gyre, J. Geophys. Res., 95:18303.CrossRefGoogle Scholar
  33. Schmitt, R., 1981, Form of the temperature — salinity relationship in the Central Water: evidence for double diffusive mixing, J. Phys. Oceanogr., 11:1015.CrossRefGoogle Scholar
  34. Shulenberger, E. and Reid, J. L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered, Deep-Sea Res., 28:901.CrossRefGoogle Scholar
  35. Spitzer, W. S., 1989, Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda, PhD Thesis, W.H.O.I.-M.I.T. Joint Program in Oceanography.Google Scholar
  36. Spitzer, W. S., and Jenkins, W. J., 1989, Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda, J. Mar. Res., 47:169.CrossRefGoogle Scholar
  37. Takahaski, T., Broecker, W. S., and Langer, S., 1985, Redfield ratio based on chemical data from isopycnal surfaces, J. Geophys. Res., 90:6907.CrossRefGoogle Scholar
  38. Talley, L. D., and Raymer, M. E., 1982, Eighteen degree water variability, J. Mar. Res., 40 (Suppl.),757.Google Scholar
  39. Thiele, G., and Sarmiento, J. L., 1990, Tracer dating and ocean ventilation, J. Geophys. Res., 95:9377.CrossRefGoogle Scholar
  40. Venrick, E. L., McGowan, J. A., Cayan, D. R., and Hayward, T. L., 1987, Climate and chlorophyll a: long-term trends in the central North Pacific Ocean, Science, 238:70.PubMedCrossRefGoogle Scholar
  41. Wallace, D. W. R., Moore, R. M., and Jones, E. P., 1987, Ventilation of the Arctic Ocean cold halocline: rates of diapycnal and isopycnal transport, oxygen utilization and primary production inferred using chlorofluoromethane distributions, Deep-Sea Res., 34:1957.CrossRefGoogle Scholar
  42. Williams, P. J. leB., and Robertson, J. E., 1991, Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients, J. Plankt. Res., 13:153.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • W. J. Jenkins
    • 1
  • D. W. R. Wallace
    • 2
  1. 1.Department of ChemistryWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Department of Applied ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations