The Role of Coastal High Latitude Ecosystems in Global Export Production

  • Paul K. Bienfang
  • David A. Ziemann
Part of the Environmental Science Research book series (ESRH, volume 43)


If one were to sit down and design a perfectly conservative pelagic ecosystem, it would likely have the following properties. First, it would be a steady-state system, in which the delivery of essential substrates would be constant over time to minimize transient oscillations of the food web to changing substrate supplies. Second, the biological components would be built upon small-sized primary producers (e.g., picoplankton), and consist of a complex network of numerous trophic levels of carefully balanced standing stocks, which are configured in a K-type strategy having numerous feedback loops for the regeneration of essential substrates. Third, the system would have negligible sinking rates to minimize vertical transport of material away from the photic influx at the surface. Fourth, the benthos would be located far away (i.e., in deep water) to maximize the time/opportunities for regeneration and, thus, minimize losses from the water column.


Specific Growth Rate Particulate Organic Carbon Fecal Pellet Sediment Trap Carbon Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, W. H., Fischer, K., Lai, C., and Wu, G., 1987, Ocean productivity and carbon flux. Part I., Overview and maps of primary production and export production, SIO Ref., 87-30.Google Scholar
  2. Berger, W. H., Smetacek, V. S., and Wefer, G., 1989, Ocean productivity and paleoproductivity — an overview, in: “Productivity of the Ocean: Present and Past, Report of the Dahlem Workshop, Berlin,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., Wiley, New York.Google Scholar
  3. Beltzer, P.R., Howers, W.H.S., Laws, E.A., Win, C.D., Ditullio, G.R., and Kroopnick, P.M., 1984, Primary production and particulate fluxes on a transect of the equator at 153 degrees West in the Pacific Ocean, Deep-Sea Res., 31:1.CrossRefGoogle Scholar
  4. Bienfang, P. K., 1979, Instruments and Methods. A new phytoplankton sinking rate method suitable for field use, Deep-Sea Res., 26:719.CrossRefGoogle Scholar
  5. Bienfang, P. K., 1981, SETCOL — A technologically simple and reliable method for measuring phytoplankton sinking rates, Can. J. Fish. Aquat. Sci., 38:1289.CrossRefGoogle Scholar
  6. Bienfang, P. K., Laws, E., and Johnson, W., 1977, Phytoplankton sinking rate determination: Technical and theoretical aspects, an improved methodology, J. Exp. Mar. Biol Ecol., 30:283.CrossRefGoogle Scholar
  7. Bienfang, P. K., 1980a, Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA, Mar. Biol., 61:69.CrossRefGoogle Scholar
  8. Bienfang, P. K., 1980b, Herbivore diet affects fecal pellet settling, Can. J. Fish. Aquat. Sci., 37:1352.CrossRefGoogle Scholar
  9. Bienfang, P. K., and Szyper, J. P., 1981, Phytoplankton dynamics in the Subtropical Pacific Ocean off Hawaii, Deep-Sea Res., 28:981.CrossRefGoogle Scholar
  10. Bienfang, P. K., 1982, Phytoplankton sinking-rate dynamics in enclosed experimental ecosystems, in: “Marine Mesocosms, Biological and Chemical Research in Experimental Ecosystems,” G. D. Grice and M. R. Reeve, eds., Springer Verlag, New York.Google Scholar
  11. Bienfang, P. K., Harrison, P. J., and Quarmby, L. M., 1982, Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms, Mar. Biol., 67:295.CrossRefGoogle Scholar
  12. Bienfang, P. K., and Szyper, J. P., 1982, Effects of temperature and salinity on sinking rates of the centric diatom Ditylum brightwelli, Biol. Oceanogr., 1:211.Google Scholar
  13. Bienfang, P. K., and Takahashi, M., 1983, Ultraplankton growth rates in a subtropical ecosystem, Mar. Biol., 76:213.CrossRefGoogle Scholar
  14. Bienfang, P. K., Szyper, J., and Laws, E., 1983, Sinking rate and pigment responses to light-limitation of a marine diatom: Implications to dynamics of chlorophyll maximum layers, Oceanologica Acta, 6:55.Google Scholar
  15. Bienfang, P. K., Szyper, J. P., Okamoto, M. Y., and Noda, E. K., 1984, Temporal and spatial variability of phytoplankton in a subtropical ecosystem, Limnol. Oceanogr., 29:527.CrossRefGoogle Scholar
  16. Bienfang, P. K., 1984, Size structure and sedimentation of biogenic microparticulates in a subarctic ecosystem, Journal of Plankton Research, 6:985.CrossRefGoogle Scholar
  17. Bienfang, P. K., 1985a, Sedimentation of suspended microparticulate material in the point conception upwelling ecosystem, in: “A Technical Report of Research Performed During the 1983 OPUS II Fieldwork,” The Oceanic Institute, Waimanalo, Hawaii.Google Scholar
  18. Bienfang, P. K., 1985b, Size structure and sinking rates of various microparticulate constituents in oligotrophic Hawaiian Waters, Mar. Ecol. Pro. Ser., 23:143.CrossRefGoogle Scholar
  19. Bienfang, P. K., and Harrison, P. J., 1984a, Co-Variation of sinking rate and cell quota among nutrient replete marine phytoplankton, Mar. Ecol. Pro. Ser., 14:297.CrossRefGoogle Scholar
  20. Bienfang, P. K., and Harrison, P. J., 1984b, Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion, Mar. Biol., 83:293.CrossRefGoogle Scholar
  21. Chavez, F. P., and Barber, R. T., 1987, An estimate of new production in the Equatorial Pacific, Deep-Sea Res., 34:1229.CrossRefGoogle Scholar
  22. Eppley, R. W., Holmes, R. W., and Strickland, J. D. H., 1967, Sinking rates of marine phytoplankton measured with a fluorometer, 7. Exp. Mar. Biol. Ecol., 1:191.CrossRefGoogle Scholar
  23. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.CrossRefGoogle Scholar
  24. Iverson, R. L., 1990, Control of marine fish production, Limnol Oceanogr., 35:1593.CrossRefGoogle Scholar
  25. Kanda, J., Ziemann, D. A., Conquest, L. D., and Bienfang, P. K., 1990, Nitrate and ammonium uptake by phytoplankton populations during the spring bloom in Auke Bay, Alaska, Estuarine, Coastal and Shelf Science, 30:509.CrossRefGoogle Scholar
  26. Koblentz-Mishke, O. I., Volkovinski, V. V., and Kabanova, J. G., 1970, Plankton primary production of the world ocean, in: “Scientific Exploration of the South Pacific,” W. Wooster, ed., National Academy of Sciences, Washington, DC.Google Scholar
  27. Laws, E. A., Redalje, D. G., Haas, L. W., Bienfang, P. K., Eppley, R. W., Harrison, W. G., Karl, D. M., and Jarra, J., 1984, High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters, Limnol. Oceanogr., 29:1161.CrossRefGoogle Scholar
  28. Laws, E. A., Bienfang, P. K., Ziemann, D. A., and Conquest, L. D., 1988, Phytoplankton population dynamics and the fate of production during the spring bloom in Auke Bay, Alaska, Limnol. Oceanogr., 33:57.CrossRefGoogle Scholar
  29. Lorenzen, C. J., Welschmeyer, N. A., and Copping, A. E., 1983, Particulate organic carbon flux in the subarctic Pacific, Deep-Sea Res., 30:639.CrossRefGoogle Scholar
  30. Mann, K.H., 1984, Fish production in open ocean ecosystems, in: “Flows of Energy and Materials in Marine Ecosystems,” NATO Conf. Ser. 4. Mar. Sci., 13, Plenum Press, New York.Google Scholar
  31. Platt, T., and Subba Rao, D. V., 1975, Primary production of marine macrophytes, in: “Photosynthesis and Productivity of Different Environments,” International Biological Programme, 3:249, Cambridge University Press.Google Scholar
  32. Ryther, J. H., 1969, Photosynthesis and fish production in the sea, Science, 166:72.PubMedCrossRefGoogle Scholar
  33. Seuss, E., 1980, Particulate organic fluxes in the oceans — surface productivity and oxygen utilization, Nature, 228:260.CrossRefGoogle Scholar
  34. Shushkina, E. A., 1985, Production of principal ecological groups of plankton in the epipelagic zone of the ocean, Oceanology, 25:653.Google Scholar
  35. Smayda, T. J., 1970, The suspension and sinking of phytoplankton in the sea, Oceanogr. Mar. Biol. Ann. Rev., 8:353.Google Scholar
  36. Smayda, T. J., and Bienfang, P. K., 1983, Suspension properties of various phyletic groups of phytoplankton and tintinnids in an oligotrophic subtropical system, Mar. Ecol., 4:289.CrossRefGoogle Scholar
  37. Steele, J. H., and Yentsch, C. S., 1960, The vertical distribution of chlorophyll, J. Mar. Biol. Assoc. U.K., 39:217.CrossRefGoogle Scholar
  38. Takahashi, M., and Bienfang, P. K., 1983, Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters, Mar. Biol., 76:203.CrossRefGoogle Scholar
  39. Wassman, P., 1988, Primary production and sedimentation, in: “Sediment Trap Studies in the Nordic Countries,” P. Wassman, and A.-S. Heiskanen, eds., Ylio pisto-paino, Helsinki, Finland.Google Scholar
  40. Wyrtki, K., 1963, The horizontal and vertical field of motion in the Peru Current, Bulletin of the Scripps Institute of Oceanography, 8:313.Google Scholar
  41. Wyrtki, K., 1981, An estimate of equatorial upwelling in the Pacific, J. Phys. Oceanogr., 11:1205.CrossRefGoogle Scholar
  42. Ziemann, D. A., Conquest, L. D., Fulton-Bennett, K. W., and Bienfang, P. K., 1990, Interannual variability in the Auke Bay phytoplankton, in: “APPRISE — Interannual Variability and Fisheries Recruitment,” D.A. Ziemann and K.W. Fulton-Bennett, eds., The Oceanic Institute, Honolulu.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Paul K. Bienfang
    • 1
  • David A. Ziemann
    • 1
  1. 1.The Oceanic InstituteHonoluluUSA

Personalised recommendations