Advertisement

Productivity of Zooxanthellae and Biogeochemical Cycles

  • Leonard Muscatine
  • Virginia Weis
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

Symbiotic dinoflagellates (zooxanthellae) are dominant primary producers in tropical reef communities along with benthic algae (macrophytes), unicellular and filamentous sand algae, turf algae, sea grasses, and phytoplankton (Larkum, 1983). Zooxanthellae are widely distributed and abundant in the cells of foraminiferans, radiolarians, sponges, cnidarians and molluscs. Among the cnidarians, they inhabit true stony corals, soft corals, gorgonians, sea anemones, milleporines, zoanthids, and hydrozoans. Although all of these taxa are represented on coral reefs and contribute to reef productivity, corals are most often used as models for productivity of zooxanthellae. This is because zooxanthellae population densities often exceed 106 cells per cm2 of the surface area of the coral (Muscatine, 1980), corals cover from 10% to 50% of the projected surface area of many reefs (Larkum, 1983), and coral reef communities cover 6 × 105 km2 of the world’s oceans (Smith, 1978). Corals emerge as the source of the most detailed information. Moreover, measurement of coral productivity has now achieved sufficient precision and standardization so that results from a wide range of studies can easily be compared.

Keywords

Coral Reef Dissolve Inorganic Nitrogen Reef Community Coral Reef Community Symbiotic Dinoflagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, D.J., and Chalker, B.E., 1990, Calcification and photosynthesis in reef-building corals and algae, in: Coral Reefs, “Z. Dubinsky ed., Elsevier, Amsterdam.Google Scholar
  2. Battey, J.F., and Patton, J.S., 1984, A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis, Mar. Biol., 79:27.CrossRefGoogle Scholar
  3. Battey, J.F., and Patton, J.S., 1986, Glycerol translocation in Condylactis gigantea, Mar. Biol., 95:37.CrossRefGoogle Scholar
  4. Benson, A.A., and Muscatine, L., 1974, Wax in coral mucus: Energy transfer from corals to reef fishes, Limnol. Oceanogr., 19:810.CrossRefGoogle Scholar
  5. Bunt, J., 1975, Primary productivity of marine ecosystems, in: “Primary Productivity of the Biosphere”, H. Lieth and R.H. Whittaker eds., Springer-Verlag, New York.Google Scholar
  6. Burris, J.E., Porter, J.W., and Laing, W.A., 1983, Effects of carbon dioxide concentration on coral photosynthesis, Mar. Biol., 75:113.CrossRefGoogle Scholar
  7. Chalker, B.E., Cox, T., and Dunlap, W.C., 1984, Seasonal changes in primary production and photoadaptation by the reef-building coral Acropora granulosa, in: “Marine Phytoplankton and Productivity,” O. Holm-Hansen, L. Bolis, and R. Giles eds., Springer-Verlag, New York.Google Scholar
  8. Colley, N.J., and Trench, R.K., 1985, Cellular events in the reestablishment of symbiosis between a marine dinoflagellate and a coelenterate, Cell Tissue Res., 239:93.PubMedCrossRefGoogle Scholar
  9. Cooksey, K., and Cooksey, B., 1972, Turnover of photosynthetically fixed carbon in reef corals, Mar. Biol., 15:289.CrossRefGoogle Scholar
  10. Crossland, C.J., 1980, Release of photosynthetically-derived organic carbon from a hermatypic coral, Acropora cf. acuminata, in: “Endosymbiosis and Cell Biology,” W. Schwemmler and H.E.A. Schenk eds., W. De Gruyter, Berlin.Google Scholar
  11. Crossland, C.J., Barnes, D.J., and Borowitzka, M.A., 1980a, Diurnal lipid and mucus production in the staghorn coral Acropora acuminata, Mar. Biol., 60:81.CrossRefGoogle Scholar
  12. Crossland, C.J., Barnes, D.J., Cox, T., and Devereaux, M., 1980b, Compartmentation and turnover of organic carbon in the staghorn coral Acropora formosa, Mar. Biol., 59:181.CrossRefGoogle Scholar
  13. Cummings, C.E., and McCarty, H.B., 1982, Stable carbon isotope ratios in Astrangia danae: Evidence for algal modification of carbon pools used in calcifcation, Geochem. et Cosmochim. Acta, 46:1125.CrossRefGoogle Scholar
  14. Davies, P.S., 1977, Carbon budgets and vertical zonation of Atlantic reef corals, Proc. 3rd Int. Reef Coral Symp., 1:392.Google Scholar
  15. Davies, P.S., 1984, The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi, Coral Reefs, 2:181.Google Scholar
  16. Davies, P.S., 1991, The effect of daylight variations on the energy budgets of shallow-water corals, Mar. Biol., 108:137.CrossRefGoogle Scholar
  17. D’Elia, C.F., and Weibe, W.J., 1990, Biogeochemical nutrient cycles in coral-reef ecosystems, in: “Coral Reefs,” Z. Dubinsky ed., Elsevier, Amsterdam.Google Scholar
  18. Dennison, W.C., and Barnes, D.J., 1987, Effects of water motion on coral photosynthesis and calcification, J. Exp. Mar. Biol. Ecol., 115:67.CrossRefGoogle Scholar
  19. Dubinsky, Z., Falkowski, P.G., Porter, J.W., and Muscatine, L., 1984, Absorption and utilization of radiant energy by light-and shade-adapted colonies of the hermatypic coral Stylophora pistillata, Proc. R. Soc. Lond., 222:203.CrossRefGoogle Scholar
  20. Dubinsky, Z., Stambler, N., Ben-Zion, M., McCloskey, L., Muscatine, L., and Falkowski, P.G., 1989, The effects of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata, Proc. R. Soc. Lond., B239:231.Google Scholar
  21. Edmunds, P.J., and Davies, P.S., 1986, An energy budget for Porites porites (Scleractinia), Mar. BioL, 92:339.CrossRefGoogle Scholar
  22. Eppley, R.W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, in: “Primary Productivity in the Seas,” P.G. Falkowski ed., Plenum Press, New York.Google Scholar
  23. Falkowski, P.G., Dubinsky, Z., Muscatine, L. and Porter, J. W., 1984, Light and the bioenergetics of a symbiotic coral, BioScience, 34:705.CrossRefGoogle Scholar
  24. Fitt, W.K., and Trench, R.K., 1985, Endocytosis of the symbiotic dinoflagellate Symbiodinium microcadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion, J. Cell. Sci., 64:195.Google Scholar
  25. Fricke, H.W., and Vareschi, E., 1982, A scleractinian coral (Plerogyra sinuosa) with “photosynthetic organs,”, Mar. Ecol., 7:273.CrossRefGoogle Scholar
  26. Fricke, H.W., and Schuhmacher, H., 1983, The depth limits of Red Sea stony corals: An ecophysiological problem (a deep diving survey by submersible). P.S.Z.N.I., Mar. Ecol., 4:163.CrossRefGoogle Scholar
  27. Goreau, T.F., 1964, Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora, Science, 145:383.PubMedCrossRefGoogle Scholar
  28. Goreau, T.F., 1977, Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis, Proc. R. Soc. Lond., B196:291.CrossRefGoogle Scholar
  29. Graham, D., and Smillie, R.M., 1976, Carbonate dehydratase in marine organisms of the Great Barrier Reef, Aust. J. Plant Physiol., 3:113.CrossRefGoogle Scholar
  30. Hatcher, B.G., 1988, Coral reef primary productivity: A beggar’s banquet, TREE, 3:106.PubMedGoogle Scholar
  31. Hoegh-Guldberg, O., McCloskey, L.R., and Muscatine, L., 1987, Expulsion of zooxanthellae from symbiotic cnidarians from the Red Sea, Coral Reefs, 7:113.CrossRefGoogle Scholar
  32. Hoegh-Guldberg, O., and Smith, G.J., 1989, Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata, Mar. Ecol. Prog. Ser., 57:173.CrossRefGoogle Scholar
  33. Hofmann, D.K., and Kremer, B.P., 1981, Carbon metabolism and strobilation in Cassiopea andromeda (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates, Mar. Biol., 65:25.CrossRefGoogle Scholar
  34. Kellogg, R.B., and Patton, J.S., 1983, Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: A model coral polyp, Mar. Biol., 75:137.CrossRefGoogle Scholar
  35. Land, L.S., Lang, J.C., and Smith, B.N., 1975, Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae, Limnol. Oceanogr., 20:283.CrossRefGoogle Scholar
  36. Larkum, A.W.D., 1983, The primary productivity of plant communities on coral reefs, in: “Perspectives on Coral Reefs,” D.J. Barnes ed., B. Clouston, Australia.Google Scholar
  37. Lewis, J.B., 1981, Estimates of secondary production of reef corals, Proc. 4th Int. Coral Reef Symp., p. 369.Google Scholar
  38. Lewis, D. and Smith, D.C., 1971, The autotrophic nutrition of symbiotic marine coelenterates with reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts, Proc. R. Soc, Lond., B178:111.CrossRefGoogle Scholar
  39. Lucas, W.J., and Berry, J.A., 1985, Inorganic carbon transport in aquatic photosynthetic organisms, Physiol. Plant, 65:539.CrossRefGoogle Scholar
  40. McCloskey, L.R., and Muscatine, L., 1984, Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth, Proc. R. Soc. Lond., B222:215.CrossRefGoogle Scholar
  41. Miller, D.J., and Yellowlees, D., 1989, Inorganic nitrogen uptake by symbiotic marine cnidarians: A critical review, Proc. R. Soc. Lond., B237:109.CrossRefGoogle Scholar
  42. Muscatine, L., 1980, Productivity of zooxanthellae, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum, New York.Google Scholar
  43. Muscatine, L., 1990, The role of symbiotic algae in carbon and energy flux in reef corals, in: “Coral Reefs,” Z. Dubinsky, ed., Elsevier, Amsterdam.Google Scholar
  44. Muscatine, L., Mccloskey, L. R., and Marian, R. E., 1981, Estimating the daily contribution of carbon from zooxanthellae to animal respiration, Limnol. Oceanogr., 26:601.CrossRefGoogle Scholar
  45. Muscatine, L., Falkowski, P.G., Porter, J.W., and Dubinsky, Z., 1984, Fate of photosynthetic fixed carbon in light and shade-adapted colonies of the symbiotic coral Stylophora pistillata, Proc. R. Soc. Lond., B222:181.CrossRefGoogle Scholar
  46. Muscatine, L., McCloskey, L.R., and Loya, Y., 1985, A comparison of the growth rates of zooxanthellae and animal tissue in the Red Sea coral Stylophora pistillata, Proc. 5th Int. Coral Reef Symp., 6:119.Google Scholar
  47. Muscatine, L., Porter, J.W., and Kaplan, I.R., 1989a, Resource partitioning by reef corals as determined from stable isotope composition. I. δ13C of zooxanthellae and animal tissue vs. depth, Mar. Biol., 100:185.CrossRefGoogle Scholar
  48. Muscatine, L., Falkowski, P.G., Dubinsky, Z., Cook, P.A., and McCloskey, L.R., 1989b, The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral, Proc. R. Soc. Loud., B236:311.CrossRefGoogle Scholar
  49. Patton, J.S., and Burris, J.E., 1983, Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae), Mar. Biol., 75:131.CrossRefGoogle Scholar
  50. Porter, J.W., 1976, Autotrophy, heterotrophy and resource partitioning in Caribbean reef-building corals, Am. Nat., 110:731.CrossRefGoogle Scholar
  51. Porter, J.W., 1985, The maritime weather of Jamaica: its effects on annual carbon budgets of the massive reef-building coral Montastrea annularis, Proc. 5th Int. Coral Reef Symp., 6:363.Google Scholar
  52. Porter, J.W., Muscatine, L., Dubinsky, Z., and Falkowski, P.G., 1984, Primary production and photoadaptation in light-and shade-adapted colonies of the symbiotic coral, Stylophora pistillata, Proc. R. Soc. Lond., B222:161.CrossRefGoogle Scholar
  53. Schlichter, D., Svoboda, A., and Kremer, B.P., 1983, Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host, Mar. Biol., 78:29.CrossRefGoogle Scholar
  54. Schlichter, D., Kremer, D.P., and Svoboda, A., 1984, Zooxanthellae providing assimilatory power for the incorporation of exogenous acetate in Heteroxenia fuscescens (Cnidaria: Alcyonaria), Mar. Biol., 83:277.CrossRefGoogle Scholar
  55. Schlichter, D., Fricke, H.W., and Weber, W., 1986, Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone, Mar. Biol., 91:403.CrossRefGoogle Scholar
  56. Schlichter, D., Weber, W., and Fricke, H., 1985, A chromatophore system in the hermatypic, deep water coral Leptoseris fragilis (Anthozoa: Hexocorallia), Mar. Biol., 89:143.CrossRefGoogle Scholar
  57. Schlichter, D., and Fricke, H.W., 1990, Coral host improves photosynthesis of endosymbiotic algae, Naturwiss., 77:447.CrossRefGoogle Scholar
  58. Schmitz, K., and Kremer, B.P., 1977, Carbon fixation and analysis of assimilates in a coral-dinoflagellate symbiosis, Mar. Biol., 43:305.CrossRefGoogle Scholar
  59. Smith, G.J., 1984, Ontogenetic variation in the symbiotic associations between zooxanthellae (Symbiodinium microadriaticum (Freudenthal) and sea anemone (Anthozoa: Actiniaria) hosts, Ph. D. Dissertation, University of Georgia.Google Scholar
  60. Smith, S.V., 1978, Coral reef area and the contributions of reefs to processes and resources of the world’s oceans, Nature, 273:225.CrossRefGoogle Scholar
  61. Steen, R.G., 1986, Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella, Biol Bull., 170:267.CrossRefGoogle Scholar
  62. Szmant-Froelich, A., 1981, Coral nutrition: Comparison of the fate of 14C from ingested labeled brine shrimp and from the uptake of NaH14CO3 by zooxanthellae, J. Exp. Mar. Biol. Ecol., 55:133.CrossRefGoogle Scholar
  63. Tasch, P., 1980, “Paleobiology of the Invertebrates”, John Wiley, New York.Google Scholar
  64. Tashian, R.E., 1989, The carbonic anhydrases: Widening perspectives on their evolution, expression and function, Bioessays, 10:186.PubMedCrossRefGoogle Scholar
  65. Weis, V.M. 1990, The role of carbonic anhydrase in symbiotic cnidarians, Ph.D. Thesis, University of California, Los Angeles.Google Scholar
  66. Weis, V.M., 1991, The induction of carbonic anhydrase in the symbiotic sea anemone Aiptasia pulchella, Biol. Bull., 180: (in press).Google Scholar
  67. Weis, V.M., Smith, G.J., and Muscatine, L., 1989, A “CO2 supply” mechanism in zooxanthellate cnidarians: Role of carbonic anydrase, Mar. Biol., 100:195.CrossRefGoogle Scholar
  68. Wilkerson, F.P., Muller-Parker, G., and Muscatine, L., 1983, Temporal patterns of cell division in natural populations of endosymbiotic algae, Limnol. Oceanogr., 28:1009.CrossRefGoogle Scholar
  69. Wilkerson, F.P., Kobayashi, D., and Muscatine, L., 1988, Growth of symbiotic algae in Caribbean reef corals. Mitotic index and size of Caribbean reef corals, Coral Reefs, 7:29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Leonard Muscatine
    • 1
  • Virginia Weis
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations