Skip to main content

Productivity of Zooxanthellae and Biogeochemical Cycles

  • Chapter

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

Symbiotic dinoflagellates (zooxanthellae) are dominant primary producers in tropical reef communities along with benthic algae (macrophytes), unicellular and filamentous sand algae, turf algae, sea grasses, and phytoplankton (Larkum, 1983). Zooxanthellae are widely distributed and abundant in the cells of foraminiferans, radiolarians, sponges, cnidarians and molluscs. Among the cnidarians, they inhabit true stony corals, soft corals, gorgonians, sea anemones, milleporines, zoanthids, and hydrozoans. Although all of these taxa are represented on coral reefs and contribute to reef productivity, corals are most often used as models for productivity of zooxanthellae. This is because zooxanthellae population densities often exceed 106 cells per cm2 of the surface area of the coral (Muscatine, 1980), corals cover from 10% to 50% of the projected surface area of many reefs (Larkum, 1983), and coral reef communities cover 6 × 105 km2 of the world’s oceans (Smith, 1978). Corals emerge as the source of the most detailed information. Moreover, measurement of coral productivity has now achieved sufficient precision and standardization so that results from a wide range of studies can easily be compared.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, D.J., and Chalker, B.E., 1990, Calcification and photosynthesis in reef-building corals and algae, in: Coral Reefs, “Z. Dubinsky ed., Elsevier, Amsterdam.

    Google Scholar 

  • Battey, J.F., and Patton, J.S., 1984, A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis, Mar. Biol., 79:27.

    Article  CAS  Google Scholar 

  • Battey, J.F., and Patton, J.S., 1986, Glycerol translocation in Condylactis gigantea, Mar. Biol., 95:37.

    Article  Google Scholar 

  • Benson, A.A., and Muscatine, L., 1974, Wax in coral mucus: Energy transfer from corals to reef fishes, Limnol. Oceanogr., 19:810.

    Article  Google Scholar 

  • Bunt, J., 1975, Primary productivity of marine ecosystems, in: “Primary Productivity of the Biosphere”, H. Lieth and R.H. Whittaker eds., Springer-Verlag, New York.

    Google Scholar 

  • Burris, J.E., Porter, J.W., and Laing, W.A., 1983, Effects of carbon dioxide concentration on coral photosynthesis, Mar. Biol., 75:113.

    Article  CAS  Google Scholar 

  • Chalker, B.E., Cox, T., and Dunlap, W.C., 1984, Seasonal changes in primary production and photoadaptation by the reef-building coral Acropora granulosa, in: “Marine Phytoplankton and Productivity,” O. Holm-Hansen, L. Bolis, and R. Giles eds., Springer-Verlag, New York.

    Google Scholar 

  • Colley, N.J., and Trench, R.K., 1985, Cellular events in the reestablishment of symbiosis between a marine dinoflagellate and a coelenterate, Cell Tissue Res., 239:93.

    Article  PubMed  CAS  Google Scholar 

  • Cooksey, K., and Cooksey, B., 1972, Turnover of photosynthetically fixed carbon in reef corals, Mar. Biol., 15:289.

    Article  Google Scholar 

  • Crossland, C.J., 1980, Release of photosynthetically-derived organic carbon from a hermatypic coral, Acropora cf. acuminata, in: “Endosymbiosis and Cell Biology,” W. Schwemmler and H.E.A. Schenk eds., W. De Gruyter, Berlin.

    Google Scholar 

  • Crossland, C.J., Barnes, D.J., and Borowitzka, M.A., 1980a, Diurnal lipid and mucus production in the staghorn coral Acropora acuminata, Mar. Biol., 60:81.

    Article  CAS  Google Scholar 

  • Crossland, C.J., Barnes, D.J., Cox, T., and Devereaux, M., 1980b, Compartmentation and turnover of organic carbon in the staghorn coral Acropora formosa, Mar. Biol., 59:181.

    Article  CAS  Google Scholar 

  • Cummings, C.E., and McCarty, H.B., 1982, Stable carbon isotope ratios in Astrangia danae: Evidence for algal modification of carbon pools used in calcifcation, Geochem. et Cosmochim. Acta, 46:1125.

    Article  CAS  Google Scholar 

  • Davies, P.S., 1977, Carbon budgets and vertical zonation of Atlantic reef corals, Proc. 3rd Int. Reef Coral Symp., 1:392.

    Google Scholar 

  • Davies, P.S., 1984, The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi, Coral Reefs, 2:181.

    Google Scholar 

  • Davies, P.S., 1991, The effect of daylight variations on the energy budgets of shallow-water corals, Mar. Biol., 108:137.

    Article  Google Scholar 

  • D’Elia, C.F., and Weibe, W.J., 1990, Biogeochemical nutrient cycles in coral-reef ecosystems, in: “Coral Reefs,” Z. Dubinsky ed., Elsevier, Amsterdam.

    Google Scholar 

  • Dennison, W.C., and Barnes, D.J., 1987, Effects of water motion on coral photosynthesis and calcification, J. Exp. Mar. Biol. Ecol., 115:67.

    Article  Google Scholar 

  • Dubinsky, Z., Falkowski, P.G., Porter, J.W., and Muscatine, L., 1984, Absorption and utilization of radiant energy by light-and shade-adapted colonies of the hermatypic coral Stylophora pistillata, Proc. R. Soc. Lond., 222:203.

    Article  CAS  Google Scholar 

  • Dubinsky, Z., Stambler, N., Ben-Zion, M., McCloskey, L., Muscatine, L., and Falkowski, P.G., 1989, The effects of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata, Proc. R. Soc. Lond., B239:231.

    Google Scholar 

  • Edmunds, P.J., and Davies, P.S., 1986, An energy budget for Porites porites (Scleractinia), Mar. BioL, 92:339.

    Article  Google Scholar 

  • Eppley, R.W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, in: “Primary Productivity in the Seas,” P.G. Falkowski ed., Plenum Press, New York.

    Google Scholar 

  • Falkowski, P.G., Dubinsky, Z., Muscatine, L. and Porter, J. W., 1984, Light and the bioenergetics of a symbiotic coral, BioScience, 34:705.

    Article  CAS  Google Scholar 

  • Fitt, W.K., and Trench, R.K., 1985, Endocytosis of the symbiotic dinoflagellate Symbiodinium microcadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion, J. Cell. Sci., 64:195.

    Google Scholar 

  • Fricke, H.W., and Vareschi, E., 1982, A scleractinian coral (Plerogyra sinuosa) with “photosynthetic organs,”, Mar. Ecol., 7:273.

    Article  Google Scholar 

  • Fricke, H.W., and Schuhmacher, H., 1983, The depth limits of Red Sea stony corals: An ecophysiological problem (a deep diving survey by submersible). P.S.Z.N.I., Mar. Ecol., 4:163.

    Article  Google Scholar 

  • Goreau, T.F., 1964, Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora, Science, 145:383.

    Article  PubMed  CAS  Google Scholar 

  • Goreau, T.F., 1977, Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis, Proc. R. Soc. Lond., B196:291.

    Article  Google Scholar 

  • Graham, D., and Smillie, R.M., 1976, Carbonate dehydratase in marine organisms of the Great Barrier Reef, Aust. J. Plant Physiol., 3:113.

    Article  CAS  Google Scholar 

  • Hatcher, B.G., 1988, Coral reef primary productivity: A beggar’s banquet, TREE, 3:106.

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg, O., McCloskey, L.R., and Muscatine, L., 1987, Expulsion of zooxanthellae from symbiotic cnidarians from the Red Sea, Coral Reefs, 7:113.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., and Smith, G.J., 1989, Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata, Mar. Ecol. Prog. Ser., 57:173.

    Article  CAS  Google Scholar 

  • Hofmann, D.K., and Kremer, B.P., 1981, Carbon metabolism and strobilation in Cassiopea andromeda (Cnidaria: Scyphozoa): significance of endosymbiotic dinoflagellates, Mar. Biol., 65:25.

    Article  CAS  Google Scholar 

  • Kellogg, R.B., and Patton, J.S., 1983, Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: A model coral polyp, Mar. Biol., 75:137.

    Article  CAS  Google Scholar 

  • Land, L.S., Lang, J.C., and Smith, B.N., 1975, Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae, Limnol. Oceanogr., 20:283.

    Article  CAS  Google Scholar 

  • Larkum, A.W.D., 1983, The primary productivity of plant communities on coral reefs, in: “Perspectives on Coral Reefs,” D.J. Barnes ed., B. Clouston, Australia.

    Google Scholar 

  • Lewis, J.B., 1981, Estimates of secondary production of reef corals, Proc. 4th Int. Coral Reef Symp., p. 369.

    Google Scholar 

  • Lewis, D. and Smith, D.C., 1971, The autotrophic nutrition of symbiotic marine coelenterates with reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts, Proc. R. Soc, Lond., B178:111.

    Article  Google Scholar 

  • Lucas, W.J., and Berry, J.A., 1985, Inorganic carbon transport in aquatic photosynthetic organisms, Physiol. Plant, 65:539.

    Article  CAS  Google Scholar 

  • McCloskey, L.R., and Muscatine, L., 1984, Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth, Proc. R. Soc. Lond., B222:215.

    Article  Google Scholar 

  • Miller, D.J., and Yellowlees, D., 1989, Inorganic nitrogen uptake by symbiotic marine cnidarians: A critical review, Proc. R. Soc. Lond., B237:109.

    Article  Google Scholar 

  • Muscatine, L., 1980, Productivity of zooxanthellae, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum, New York.

    Google Scholar 

  • Muscatine, L., 1990, The role of symbiotic algae in carbon and energy flux in reef corals, in: “Coral Reefs,” Z. Dubinsky, ed., Elsevier, Amsterdam.

    Google Scholar 

  • Muscatine, L., Mccloskey, L. R., and Marian, R. E., 1981, Estimating the daily contribution of carbon from zooxanthellae to animal respiration, Limnol. Oceanogr., 26:601.

    Article  CAS  Google Scholar 

  • Muscatine, L., Falkowski, P.G., Porter, J.W., and Dubinsky, Z., 1984, Fate of photosynthetic fixed carbon in light and shade-adapted colonies of the symbiotic coral Stylophora pistillata, Proc. R. Soc. Lond., B222:181.

    Article  Google Scholar 

  • Muscatine, L., McCloskey, L.R., and Loya, Y., 1985, A comparison of the growth rates of zooxanthellae and animal tissue in the Red Sea coral Stylophora pistillata, Proc. 5th Int. Coral Reef Symp., 6:119.

    Google Scholar 

  • Muscatine, L., Porter, J.W., and Kaplan, I.R., 1989a, Resource partitioning by reef corals as determined from stable isotope composition. I. δ13C of zooxanthellae and animal tissue vs. depth, Mar. Biol., 100:185.

    Article  Google Scholar 

  • Muscatine, L., Falkowski, P.G., Dubinsky, Z., Cook, P.A., and McCloskey, L.R., 1989b, The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral, Proc. R. Soc. Loud., B236:311.

    Article  Google Scholar 

  • Patton, J.S., and Burris, J.E., 1983, Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae), Mar. Biol., 75:131.

    Article  CAS  Google Scholar 

  • Porter, J.W., 1976, Autotrophy, heterotrophy and resource partitioning in Caribbean reef-building corals, Am. Nat., 110:731.

    Article  Google Scholar 

  • Porter, J.W., 1985, The maritime weather of Jamaica: its effects on annual carbon budgets of the massive reef-building coral Montastrea annularis, Proc. 5th Int. Coral Reef Symp., 6:363.

    Google Scholar 

  • Porter, J.W., Muscatine, L., Dubinsky, Z., and Falkowski, P.G., 1984, Primary production and photoadaptation in light-and shade-adapted colonies of the symbiotic coral, Stylophora pistillata, Proc. R. Soc. Lond., B222:161.

    Article  Google Scholar 

  • Schlichter, D., Svoboda, A., and Kremer, B.P., 1983, Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host, Mar. Biol., 78:29.

    Article  CAS  Google Scholar 

  • Schlichter, D., Kremer, D.P., and Svoboda, A., 1984, Zooxanthellae providing assimilatory power for the incorporation of exogenous acetate in Heteroxenia fuscescens (Cnidaria: Alcyonaria), Mar. Biol., 83:277.

    Article  CAS  Google Scholar 

  • Schlichter, D., Fricke, H.W., and Weber, W., 1986, Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone, Mar. Biol., 91:403.

    Article  Google Scholar 

  • Schlichter, D., Weber, W., and Fricke, H., 1985, A chromatophore system in the hermatypic, deep water coral Leptoseris fragilis (Anthozoa: Hexocorallia), Mar. Biol., 89:143.

    Article  Google Scholar 

  • Schlichter, D., and Fricke, H.W., 1990, Coral host improves photosynthesis of endosymbiotic algae, Naturwiss., 77:447.

    Article  Google Scholar 

  • Schmitz, K., and Kremer, B.P., 1977, Carbon fixation and analysis of assimilates in a coral-dinoflagellate symbiosis, Mar. Biol., 43:305.

    Article  Google Scholar 

  • Smith, G.J., 1984, Ontogenetic variation in the symbiotic associations between zooxanthellae (Symbiodinium microadriaticum (Freudenthal) and sea anemone (Anthozoa: Actiniaria) hosts, Ph. D. Dissertation, University of Georgia.

    Google Scholar 

  • Smith, S.V., 1978, Coral reef area and the contributions of reefs to processes and resources of the world’s oceans, Nature, 273:225.

    Article  Google Scholar 

  • Steen, R.G., 1986, Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella, Biol Bull., 170:267.

    Article  Google Scholar 

  • Szmant-Froelich, A., 1981, Coral nutrition: Comparison of the fate of 14C from ingested labeled brine shrimp and from the uptake of NaH14CO3 by zooxanthellae, J. Exp. Mar. Biol. Ecol., 55:133.

    Article  CAS  Google Scholar 

  • Tasch, P., 1980, “Paleobiology of the Invertebrates”, John Wiley, New York.

    Google Scholar 

  • Tashian, R.E., 1989, The carbonic anhydrases: Widening perspectives on their evolution, expression and function, Bioessays, 10:186.

    Article  PubMed  CAS  Google Scholar 

  • Weis, V.M. 1990, The role of carbonic anhydrase in symbiotic cnidarians, Ph.D. Thesis, University of California, Los Angeles.

    Google Scholar 

  • Weis, V.M., 1991, The induction of carbonic anhydrase in the symbiotic sea anemone Aiptasia pulchella, Biol. Bull., 180: (in press).

    Google Scholar 

  • Weis, V.M., Smith, G.J., and Muscatine, L., 1989, A “CO2 supply” mechanism in zooxanthellate cnidarians: Role of carbonic anydrase, Mar. Biol., 100:195.

    Article  CAS  Google Scholar 

  • Wilkerson, F.P., Muller-Parker, G., and Muscatine, L., 1983, Temporal patterns of cell division in natural populations of endosymbiotic algae, Limnol. Oceanogr., 28:1009.

    Article  Google Scholar 

  • Wilkerson, F.P., Kobayashi, D., and Muscatine, L., 1988, Growth of symbiotic algae in Caribbean reef corals. Mitotic index and size of Caribbean reef corals, Coral Reefs, 7:29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muscatine, L., Weis, V. (1992). Productivity of Zooxanthellae and Biogeochemical Cycles. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics