The goal of this manuscript is to assess this field of research for the 1980s, and to highlight the progress and the needs with specific examples. The goal is not an exhaustive review of the literature; thus, many fine contributions are not cited here. The topic is seaweed productivity sensu strictu, from the ecological perspective rather than the physiological perspective. The subject is seaweed biomass and net carbon (C) fixation rates, the regulation of those parameters by environmental properties, and techniques for assessing those parameters. Seaweeds here are marine macroalgae, mostly the chlorophytes (greens), phaeophytes (browns), and rhodophytes (reds).


Dissolve Inorganic Nitrogen Kelp Forest Marine Macroalgae Soluble Reactive Phosphate Giant Kelp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, M.J., and Smith, S.V., 1983, C:N:P ratios of benthic marine plants, Limnol. Oceanogr., 28:568.CrossRefGoogle Scholar
  2. Belsher, T., Meinesz, A., Lefevre, J.L., and Boudouresque, C-F., 1988, Simulation of SPOT satellite imagery for charting shallow-water benthic communities in the Mediterranean, P.S.Z.N.I.: Mar. Ecol., 9:157.CrossRefGoogle Scholar
  3. Bunt, J.S., 1975, Primary productivity of marine ecosystems, in “Primary Productivity of the Biosphere,” H. Leith and R.H. Whittaker eds., Springer Verlag, New York.Google Scholar
  4. Butler, J.N., and Stoner, A.W., 1984, Pelagic Sargassum: has its biomass changed in the last 50 years? Deep-Sea Res., 31:1259.CrossRefGoogle Scholar
  5. Chapman, A.R.O., and Lindley, J.E., 1981, Productivity of Laminaria solidungula J. Ag. in the Canadian High Arctic: A year round study, in “Proc. 10th International Seaweed Symposium,” T. Levring ed., Walter de Gruyter, Berlin.Google Scholar
  6. Dame, R., Chrzanowski, T., Bildstein, K., Kjerfve, B., McKellar, H., Nelson, D., Spurrier, J., Stancyk, S., Stevenson, H., Vernberg, J., and Zingmark, R., 1986, The outwelling hypothesis and North Inlet, South Carolina, Mar. Ecol. Prog. Ser., 33:217.CrossRefGoogle Scholar
  7. Dayton, P.K., and Tegner, M.J. 1984, Catastrophic storms, El Niño, and patch stability in a southern California kelp community, Science, 224:283.PubMedCrossRefGoogle Scholar
  8. Dayton, P.K., Currie, V., Gerrodette, T., Keller, B.D., Rosenthal, R., and Ven Tresca, D., 1984, Patch dynamics and stability of some California kelp communities, Ecol. Monogr., 54:253.CrossRefGoogle Scholar
  9. Dennison, W.C., and Alberte, R.S. 1985, Role of daily light period in the depth distribution of Zostera marina (eelgrass), Mar. Ecol. Prog. Ser., 25:51.CrossRefGoogle Scholar
  10. Duggins, D.O., Simenstad, C.A., and Estes, J.A., 1989, Magnification of secondary production by kelp detritus in the coastal marine ecosystems, Science, 245:170.PubMedCrossRefGoogle Scholar
  11. Dunton, K.H., 1990, Growth and production in Laminaria solidungula: Relation to continuous underwater light levels in the Alaskan High Arctic, Mar. Biol., 106:297.CrossRefGoogle Scholar
  12. Dunton, K.H., Reimnitz, E., and Schonberg, S., 1982, An arctic kelp community in the Alaskan Beaufort Sea, Arctic, 35:465.Google Scholar
  13. Dunton, K.H., and Schell, D.M., 1987, Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence, Mar. Biol., 93:615.CrossRefGoogle Scholar
  14. Earle, S.A., 1985, Equipment for conducting research in deep water, in: “Handbook of Phycological Methods. Ecological Field Methods: Macroalgae,” M.M. Littler, and D.S. Littler, eds., Cambridge University Press, Cambridge.Google Scholar
  15. Fowler, S.W., and Knauer, G.A., 1986, Role of large particles in the transport of elements and organic compounds through the oceanic water column, Prog. Oceanogr., 16:147.CrossRefGoogle Scholar
  16. Gerard, V.A., 1984a, The light environment in a giant kelp forest: Influence of Macrocystis pyrifera on spatial and temporal variability, Mar. Biol., 84:189.CrossRefGoogle Scholar
  17. Gerard, V.A., 1984b, Physiological effects of El Nino on giant kelp in southern California, Mar. Biol. Lett., 5:317.Google Scholar
  18. Grassle, J.F., and Morse-Porteous, L.S., 1987, Macrofaunal colonization of disturbed deep-sea environments and the structure of deep-sea benthic communities, Deep-Sea Res., 12:191.Google Scholar
  19. Greene, R.M., and Gerard, V.A., 1990, Effects of high-frequency light fluctuations on growth and photoacclimation of the red alga Chondrus crispus, Mar. Biol., 105:337.CrossRefGoogle Scholar
  20. Howarth, R.W., 1988, Nutrient limitation of net primary production in marine ecosystems, Ann. Rev. Ecol., 19:89.CrossRefGoogle Scholar
  21. Jackson, G.A., 1987, Modelling the growth and harvest yield of the giant kelp Macrocystis pyrifera, Mar. Biol., 95:611.CrossRefGoogle Scholar
  22. Jackson, G.A., and Winant, C.D., 1983, Effect of a kelp forest on coastal currents, Cont. Shelf Res., 2:75.CrossRefGoogle Scholar
  23. Kitting, C.L., Fry, B., and Morgan, M.D., 1984, Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows, Oecologia, 62:145.CrossRefGoogle Scholar
  24. Koop, K., Newell, R.C., and Lucas, M.I., 1982a, Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm, Mar. Ecol. Prog. Ser., 7:315.CrossRefGoogle Scholar
  25. Koop, K., Newell, R.C., and Lucas, M.I., 1982b, Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore, Mar. EcoL Prog. Ser., 9:91.CrossRefGoogle Scholar
  26. LaPointe, B.E., 1986, Phosphorous-limited photosynthesis and growth of Sargassum natans and Sargassum fluitans (Phaeophyceae) in the western North Atlantic, Deep-Sea Res., 33:391.CrossRefGoogle Scholar
  27. LaPointe, B.E., and O’Connell, J., 1989, Nutrient-enhanced growth of Cladophora prolifera in Harrington Sound, Bermuda: Eutrophication of a confined phosphorous-limited marine ecosystem, Est., Coast. Shelf Sci., 28:347.CrossRefGoogle Scholar
  28. LaPointe, B.E., O’Connell, J., and Garrett, G.S., 1990, Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys, Biogeochem., 10:289.CrossRefGoogle Scholar
  29. LaPointe, B.E., Littler, M.M., and Littler, D.S., 1991, N:P availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters, Estuaries, in press.Google Scholar
  30. Littler, M.M., and Littler, D.S., 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: Field and laboratory tests of a functional form model, Am. Nat., 116:25.CrossRefGoogle Scholar
  31. Littler, M.M., Littler, D.S., Blair, S.M., and Noms, J.M., 1985, Deepest known plant life discovered on an uncharted seamount, Science, 227:57.PubMedCrossRefGoogle Scholar
  32. Littler, M.M., Littler, D.S., Blair, S.M., and Norris, J.B., 1986, Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: Distribution, abundance, and primary productivity, Deep-Sea Res., 33:881.CrossRefGoogle Scholar
  33. Littler, D.S., and Littler, M.M., 1987, Rocky intertidal aerial survey methods using helicopters, Photo-Interprétation, 1:31.Google Scholar
  34. Mann, K.H., 1982, Ecology of Coastal Waters, A Systems Approach, U. Calif. Press, Berkeley.Google Scholar
  35. Mann, K.H., 1988, Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems, Limnol. Oceanogr., 33:910.CrossRefGoogle Scholar
  36. Markager, S., and Sand-Jensen, K., 1990, Heterotrophic growth of Ulva lactuca (Chlorophyceae), J. Phycol., 26:670.CrossRefGoogle Scholar
  37. Meulstee, C., Nienhuis, P.H., and Van Stokkom, H.T.C., 1986, Biomass assessment of estuarine macrophytobenthos using aerial photography, Mar. Biol., 91:331.CrossRefGoogle Scholar
  38. Newell, R.C., and Field, J.G., 1983, The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community, Mar. Biol. Lett., 4:23.Google Scholar
  39. Nixon, S.W., Oviatt, C.A., Firthsen, J., and Sullivan, B., 1986, Nutrients and the productivity of estuarine and coastal ecosystems, J. Limnol. Soc. South Africa, 12:43.CrossRefGoogle Scholar
  40. Ramus, J., 1990, A form-function analysis of photon capture for seaweeds, Hydrobiologia 204/205:65.CrossRefGoogle Scholar
  41. Ramus, J., and Venable, M., 1987, Temporal ammonium patchiness and growth rate in Codium and Ulva (Ulvophyceae), J. Phycol., 23:518.CrossRefGoogle Scholar
  42. Smith, S.V., 1981, Marine macrophytes as a global carbon sink, Science, 211:838.PubMedCrossRefGoogle Scholar
  43. Stuart, V., Field, J.G., and Newell, R.C., 1982, Evidence for the absorption of kelp detritus by the ribbed mussel Aulacomya after using a new 13C-labelled microsphere technique, Mar. Ecol. Prog. Ser., 9:263.CrossRefGoogle Scholar
  44. Topinka, J.A., Bellows, W.K., and Yentsch, C.S., 1990, Characterization of marine macroalgae by fluorescence signatures, Int. J. Remote Sensing, 11:2329.CrossRefGoogle Scholar
  45. Valiella, I., Costa, J., Foreman, K., Teal, J.M., Howes, B., and Aubrey, D., 1990, Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters, Biogeochem, 10:177.CrossRefGoogle Scholar
  46. Whittaker, R.H., and Likens, G.E., 1975, The biosphere and man, in: “Primary Productivity of the Biosphere,” H. Leith and R.H. Whittaker, eds., Springer Verlag, New York.Google Scholar
  47. Woodwell, G.M., Houghton, R.A., Hall, C.A.S., Whitney, D.E., Moll, R.A., and Juers, D.W., 1979, The Flax Pond ecosystem study: The annual metabolism and nutrient budgets of a salt marsh, in: “Ecological Processes in Coastal Environments,” R.L. Jeffries, ed., Blackwell Scientific, xford.Google Scholar
  48. Wulff, F.Y., and Field, J.G., 1983, Importance of different trophic pathways in a nearshore benthic community under upwelling and downwelling conditions, Mar. Ecol. Prog. Ser., 12:217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. Ramus
    • 1
  1. 1.Marine LaboratoryDuke UniversityBeaufortUSA

Personalised recommendations