In reviewing this subject, it became clear to me that plankton ecologists fall out into two groups: Those who delight in finding the patterns in nature that can be explained by size, and those who delight in finding exceptions to the established size-dependent rules. I came to appreciate the degree to which the satisfaction of both groups is equally justified. The mechanisms underlying the size-dependent patterns have undoubtedly steered the general course of phytoplankton evolution, but the organisms that do not abide by the rules reveal the wonderful diversity of ways in which cells have managed to disobey the “laws” scripted for them. The simplicity of the general relationships serves as a stable backdrop against which the exceptions can shine. By understanding the forces that have driven the design of these exceptions, we can begin to understand the ecology that has shaped past and present planktonic ecosystems.


Phytoplankton Community Marine Phytoplankton Pelagic Ecosystem Florida Lake Phytoplankton Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agusti, S., and Kalff, J., 1989, The influence of growth conditions on the size dependence of maximal algal density and biomass, Limnol. Oceanogr., 34:1104.CrossRefGoogle Scholar
  2. Agusti, S., Duarte, C. M., and Kalff, J., 1987, Algal cell size and the maximum density and biomass of phytoplankton, Limnol. Oceanogr., 32:983.CrossRefGoogle Scholar
  3. Agusti, S., Duarte, D. M., and Canfield, D. E., 1990, Phytoplankton abundance in Florida lakes: Evidence for frequent lack of nutrient limitation, Limnol. Oceanogr., 35:181.CrossRefGoogle Scholar
  4. Agusti, S., Duarte, D. M., and Canfield, D. E., 1991, Biomass partitioning in Florida phytoplankton communities, J. Plank. Res., 13:239.CrossRefGoogle Scholar
  5. Banse, K., 1982, Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial, Limnol. Oceanogr., 1059-1071.Google Scholar
  6. Banse, K., 1976, Rates of growth, respiration, and photosynthesis of unicellular algae as related to cell size—A review, J. Phycol., 12:135.Google Scholar
  7. Beers, J. R., Reid, F. M. H., and Stewart, G. L., 1982, Seasonal abundance of the microplankton population in the N. Pacific central gyre, Deep-Sea Res., 29:217.CrossRefGoogle Scholar
  8. Bienfang, P. K., and Takahashi, M., 1983, Ultraplankton growth rates in a subtropical ecosystem, Mar. Biol., 76:213.CrossRefGoogle Scholar
  9. Blasco, D., Packard, T. T., and Garfield, P. C., 1982, Size dependence of growth rate, respiratory electron transport system activity and chemical composition of marine diatoms in the laboratory, J. PhycoL, 18:58.CrossRefGoogle Scholar
  10. Borgmann, U., 1982, Particle-size-conversion efficiency and total animal production in pelagic ecosystems, Can. J. Fish. Aquat. Sci., 39:668.CrossRefGoogle Scholar
  11. Bricaud, A., Bedhomme, A.-L., and Morel, A., 1988, Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation, J. Plank. Res., 10:851.CrossRefGoogle Scholar
  12. Bruland, K. W., 1983, Trace elements in sea-water, in: “Chemical Oceanography, Vol. 8, J.P. Riley and R. Chester, eds., Academic Press, London.Google Scholar
  13. Button, D., and Robertson, B., 1989, Kinetics of bacterial processes in natural aquatic systems based on biomass as determined by high-resolution flow cytometry, Cytometry, 10:558.PubMedCrossRefGoogle Scholar
  14. Calder, W. A. III, 1984, “Function and Life History,” Harvard University Press, Cambridge.Google Scholar
  15. Cavalier-Smith, T., 1980, R-and K-tactics in the evolution of protist developmental systems: Cell and genome size, phenotype diversifying selection, and cell cycle patterns, Biosystems, 12:43.PubMedCrossRefGoogle Scholar
  16. Cavalier-Smith, T., 1978, Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate and the solution of the DNA C-value paradox, J. Cell. Sci., 34:247.PubMedGoogle Scholar
  17. Chan, A. T., 1978, Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size, I. Growth under continuous light, J. Phycol., 14:396.CrossRefGoogle Scholar
  18. Chavez, F. P., 1989, Size distribution of phytoplankton in the central and eastern tropical Pacific, Global Biogeochem. Cycles, 3:27.CrossRefGoogle Scholar
  19. Chavez, F. P., Buck, K. R., Coale, K., Martin, J. H., DiTullio, G. R., Welshmeyer, N. A., Jacobson, A. C., and Barber, R. T., 1991, Growth rates, grazing, sinking and iron limitation of equatorial Pacific phytoplankton, Limnol. Oceanogr., in press.Google Scholar
  20. Chisholm, S. W., and Costello, J. C., 1980, Influence of environmental factors and population composition on the timing of cell division in Thalassiosira fluviatilis (Bacillariophyceae) grown on light/dark cycles, J. Phycol., 16:375.CrossRefGoogle Scholar
  21. Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J., and Welschmeyer, N., 1988, A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, 334:340.CrossRefGoogle Scholar
  22. Chisholm, S. W., Frankel, S. L., Goericke, R., Olson, R. J., Palenik, B., Waterbury, J. B., West-Johnsrud, L., and Zettler, E. R., 1991, Prochlorococcus marinus nov. gen. nov. sp.: A oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b, Archiv. Microbiol., in press.Google Scholar
  23. Costello, J. C., and Chisholm, S. W., 1981, The influence of cell size on the growth rate of Thalassiosira weissflogii, J. Plank. Res., 3:415.CrossRefGoogle Scholar
  24. Douglas, D. J., 1984, Microautoradiography-based enumeration of photosynthetic picoplankton with estimates of carbon-specific growth rates, Mar Ecol. Prog. Ser., 14:223.CrossRefGoogle Scholar
  25. Duarte, C. M., Agusti, S., and Peters, H., 4987, An upper limit to the abundance of aquatic organisms, Oecologia (Berlin), 74:272.CrossRefGoogle Scholar
  26. Duarte, D. M., Agusti, S., and Canfield, D. E., 1990, Size plasticity of freshwater phytoplankton: Implications for community structure, Limnol. Oceanogr., 35:1846.CrossRefGoogle Scholar
  27. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.CrossRefGoogle Scholar
  28. Elton, C., 1927, “Animal Ecology,” Macmillan, New York.Google Scholar
  29. Eppley, R. W., and Sloan, P. R., 1965, Carbon balance experiments with marine phytoplankton, J. Fish. Res. Bd. Can., 22:1083.CrossRefGoogle Scholar
  30. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.CrossRefGoogle Scholar
  31. Eppley, R. W., and Sloan, P. R., 1966, Growth rates of marine phytoplankton: Correlation with light absorption by cell chlorophyll a, Physiol. Plant., 19:47.CrossRefGoogle Scholar
  32. Eppley, R. W., and Koeve, W., 1990, Nitrate use by plankton in the eastern subtropical North Atlantic, March–April 1989, Limnol. Oceanogr., 35:1781.CrossRefGoogle Scholar
  33. Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean, Mar. Biol., 39:111.CrossRefGoogle Scholar
  34. Falkowski, P. G., and Owens, T. G., 1978, Effects of light intensity on photosynthesis and dark respiration in six species of marine phytoplankton, Mar. Biol., 45:289.CrossRefGoogle Scholar
  35. Fenchel, T., 1974, Intrinsic rate of natural increase: The relationship with body size, Oecologia (Berlin), 14:317.CrossRefGoogle Scholar
  36. Fumas, M. J., 1983, Nitrogen dynamics in lower Narragansett Bay, Rhode Island, 1. Uptake by size-fractionated phytoplankton populations, J. Plank. Res., 5:657.CrossRefGoogle Scholar
  37. Furnas, M. J., and Mitchell, A. W., 1988, Photosynthetic characteristics of Choral Sea Picoplankton (<2 μm size fraction), Biol. Oceanogr., 5:163.Google Scholar
  38. Garside, C., 1982, A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrate, or nitrite alone in seawater, Mar. Chem., 11:159.CrossRefGoogle Scholar
  39. Gavis, J., 1976, Munk and Riley revisited: Nutrient diffusion transport and rates of phytoplankton growth, J. Mar. Res., 34:161.Google Scholar
  40. Geider, R. J., Platt, T., and Raven, J. A., 1986, Size dependence of growth and photosynthesis in diatoms: A synthesis, Mar. Ecol. Prog. Ser., 30:93.CrossRefGoogle Scholar
  41. Glover, H. E., Campbell, L., and Prezelin, B. B., 1986, Contribution of Synechococcus to size-fractionated primary productivity in three water masses in the Northwest Atlantic Ocean, Mar. Biol., 91:193.CrossRefGoogle Scholar
  42. Goericke, R., and Repeta, D., 1991, The pigments of Prochlorococcus marinus: The presence of divinyl-chlorophyll a and b in a marine cyanobacterium, Limnol. Oceanogr., in press.Google Scholar
  43. Goldman, J. C., 1988, Spatial and temporal discontinuities of biological processes in pelagic surface waters, in: “Toward a Theory on Biological Physical Interactions in the World Ocean,” B.J. Rothschild, ed., Kluwer Academic Publishers, New York.Google Scholar
  44. Grover, J. P., 1989, Influence of cell shape and size on algal competitive ability, J. Phycol., 25:402.CrossRefGoogle Scholar
  45. Harrison, W. G., and Wood, L. J. E., 1988, Inorganic nitrogen uptake by marine phytoplankton, Limnol. Oceanogr., 33:468.CrossRefGoogle Scholar
  46. Heinbokel, J. F., 1986, Occurrence of Richelia intracellularis (Cyanophyta) within the diatoms Hemiaulus haukii and H. membranaceus off Hawaii, J. Phycol., 22:399.CrossRefGoogle Scholar
  47. Herbland, A., Le Bouteiller, A., and Raimbault, P. L., 1985, Size structure of phytoplankton in the equatorial Atlantic Ocean, Deep-Sea Res., 32:819.CrossRefGoogle Scholar
  48. Herbland, A., and Le Bouteiller, A., 1981, The size distribution of phytoplankton and particulate organic matter in the Equatorial Atlantic Ocean, importance of ultraseston and consequences, J. Plank. Res., 3:6659.CrossRefGoogle Scholar
  49. Hopcroft, R. R., and Roff, J. C., 1990, Phytoplankton size fractions in a tropical neritic ecosystem near Kingston Jamaica, J. Plank. Res., 12:1069.CrossRefGoogle Scholar
  50. Hudson, R. J., and Morel, F. M. M., 1991, Trace metal transport by marine microorganisms: Implications of metal coordination kinetics, Deep-Sea Res., in press.Google Scholar
  51. Holm-Hansen, O., 1969, Algae: Amounts of DNA and organic carbon in single cells, Science, 163:87.PubMedCrossRefGoogle Scholar
  52. Iturriaga, R., and Mitchell, B. G., 1986, Chroococcoid cyanobacteria: A significant component of the food web dynamics of the open ocean, Mar. Ecol. Prog. Ser., 28:291.CrossRefGoogle Scholar
  53. Iturriaga, R., and Marra, J., 1988, Temporal and spatial variability of chroococcoid cyanobacteria Synechococcus spp. specific growth rates and their contribution to primary production in the Sargasso Sea, Mar. Ecol. Prog. Ser., 44:175.CrossRefGoogle Scholar
  54. Kana, T. M., and Glibert, P. M., 1987, Effect of irradiances up to 2000 μE m-2 sec-1 on marine Synechococcus WH7803 — I. Growth, pigmentation, and cell composition, Deep-Sea Res., 34:479.CrossRefGoogle Scholar
  55. Karl, D. M., Bird, D. F., Hebel, D. V., Letelier, R., Sabine, C., and Winn, C. D., 1991b, Nitrogen fixation contributes to new production in the oligotrophic North Pacific Gyre, unpublished.Google Scholar
  56. Karl, D. M., Hebel, D. V., Bird, D. F., Letelier, R., and Winn, C. D., 1991a, Trichodesmium blooms and new nitrogen in the North Pacific Gyre, in: “Biology and Ecology of Diazotrophic Marine Organisms: Trichodesmium and Other Species,” E.J. Carpenter, D.G. Capone, and J.G. Rueter, eds., Kluwer Academic Publishers, New York.Google Scholar
  57. Kerr, S. R., 1974, Theory of size distribution in ecological communities, J. Fish. Res. Bd. Can., 31:1859.CrossRefGoogle Scholar
  58. Kiefer, D. A., and Berwald, J., 1992, A random encounter model for the microbial planktonic community, Limnol. Oceanogr., in press.Google Scholar
  59. Koike, I., Ronner, U., and Holm-Hansen, O., 1981, Microbial nitrogen metabolism in the Scotia Sea, Antarctic J., 16:165.Google Scholar
  60. Koike, I., Holm-Hansen, O., and Biggs, D. C., 1986, Inorganic nitrogen metabolism by Antarctic phytoplankton with special reference to ammonia cycling, Mar. Ecol. Prog. Ser., 30:105.CrossRefGoogle Scholar
  61. LaBarbera, M., 1989, Analyzing body size as a factor in ecology and evolution, Ann. Rev. Ecol. Syst., 20:97.CrossRefGoogle Scholar
  62. Langdon, C., 1987, On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton, I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis, J. Plank. Res., 9:459.CrossRefGoogle Scholar
  63. Langdon, C., 1988, On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton, II. A general review, J. Plank. Res., 10:1291.CrossRefGoogle Scholar
  64. Laws, E. A., 1975, The importance of respiration losses in controlling the size distribution of marine phytoplankton, Ecology, 56:419.CrossRefGoogle Scholar
  65. Laws, E. A., Redalje, D. G., Haas, L. W., Bienfang, P. K., Eppley, R. W., Harrison, W. G., Karl, D. M., and Marra, J., 1984, High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters, Limnol. Oceanogr., 29:1161.CrossRefGoogle Scholar
  66. Laws, E. A., Harrison, W. G., and DiTullio, G. R., 1985, A comparison of nitrogen assimilation rates based on N-15 uptake and autotrophic protein synthesis, Deep-Sea Res., 32:85.CrossRefGoogle Scholar
  67. Lewis, W. M., 1985, Nutrient scarcity as an evolutionary cause of haploidy, Amer. Nat., 125:692.CrossRefGoogle Scholar
  68. Logan, B. E., and Alldredge, A. L., 1989, Potential for increased nutrient uptake by flocculating diatoms, Mar. Biol., 101:433.CrossRefGoogle Scholar
  69. Mague, T. H., Weare, N. M., and Holm-Hansen, O., 1974, Nitrogen fixation in the north Pacific Ocean, Mar Biol., 24:109.CrossRefGoogle Scholar
  70. Malone, T., 1975, Environmental control of phytoplankton cell size, Limnol. Oceanogr., 20:490.CrossRefGoogle Scholar
  71. Malone, T., 1971, The relative importance of nannoplankton and netplankton as primary producers in the California current system, Fish. Bull., 69:799.Google Scholar
  72. Malone, T. C., 1980a, Algal size, in: “The Physiological Ecology of Phytoplankton,” I. Morris, ed., U. Calif. Press, Berkeley and Los Angeles.Google Scholar
  73. Malone, T. C., 1980b, Size-fractionated primary productivity of marine phytoplankton, in: “Primary Productivity in the Sea,” P.G. Faikowski, ed., Brookhaven Symposium in Biology, Plenum, New York.Google Scholar
  74. Maloney, C. L., and Field, J. G., 1985, Use of particle-size data to predict potential pelagic-fish yield of some South African areas, S. Afr. J. Mar Sci., 3:119.CrossRefGoogle Scholar
  75. Martin, J. H., Gordon, R. M., and Fitzwater, S. E., 1991, The case for iron, in: “What Controls Phytoplankton Production in Nutirent Rich Areas of the Open Sea?”, S.W. Chisholm and F.M.M. Morel, eds., Limnol. Oceanogr. (Special issue), in press.Google Scholar
  76. Martinez, L., Silver, M. W., King, J. M., and Alldredge, A. L., 1983, Nitrogen fixation by floating diatom mats: A source of new nitrogen to oligotrophic ocean waters, Science, 221:152.PubMedCrossRefGoogle Scholar
  77. Morel, F. M. M., Hudson, R. J., and Price, N. M., 1991, Trace metal limitation in the sea, in: “What Controls Phytoplankton Production in Nutirent Rich Areas of the Open Sea?”, S.W. Chisholm and F.M.M. Morel, eds., Limnol. Oceanogr. (Special Issue), in press.Google Scholar
  78. Munk, W. H., and Riley, G. A., 1952, Absorption of nutrients by aquatic plants, J. Mar. Res., 11:215.Google Scholar
  79. Murphy, L. S., and Haugen, E. M., 1985, The distribution and abundance of phototrophic ultraplankton in the N. Atlantic, Limnol. Oceanogr., 30:47.CrossRefGoogle Scholar
  80. Nalewajko, C., and Garside, C., 1983, Methodological problems in the simultaneous assessment of photosynthesis and nutrient uptake in phytoplankton as functions of light intensity and cell size, Limnol. Oceanogr., 28:591.CrossRefGoogle Scholar
  81. Odate, T., and Maita, Y., 1988, Regional variation in the size composition of phytoplankton communities in the Western North Pacific Ocean, Spring 1985, Biol. Oceanogr., 6:65.Google Scholar
  82. Olson, R. J., Zettler, E. R., Dusenberry, J., and Chisholm, S. W., 1991, Advances in oceanography through flow cytometry, in: “Individual Cell and Particle Analysis in Oceanography, S. Demers and M. Lewis, eds., in press.Google Scholar
  83. Olson, R. J., Chisholm, S. W., Zettler, E. R., and Armbrust, E. V., 1988, Analysis of Synechococccus pigment types in the sea using single and dual beam flow cytometry, Deep-Sea Res., 35:425.CrossRefGoogle Scholar
  84. Olson, R.J., Chisholm, S.W., Zettler, E.R., and Armbrust, E.V., 1990a, Pigments, size, and distribution of Synechococcus in the North Atlantic and Pacific Oceans, Limnol. Oceanogr., 35:45.CrossRefGoogle Scholar
  85. Olson, R.J., Chisholm, S.W., Zettler, E.R., Altabet, M.A., and Dusenberry, J.A., 1990b, Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean, Deep-Sea Res., 37:1033.CrossRefGoogle Scholar
  86. Palenik, B.P., and Haselkorn, R., 1991, Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes, Nature, in press.Google Scholar
  87. Pasciak, W. J., and Gavis, J., 1974, Transport limitation of nutrient uptake in phytoplankton, Limnol. Oceanogr., 19:881.CrossRefGoogle Scholar
  88. Peters, R. H., 1978, Empirical physiological models of ecosystem processes, Verh. Int. Ver. Theor. Angew. Limnol., 20:110.Google Scholar
  89. Peters, R. H., 1983, “The Ecological Implications of Body Size,” Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  90. Platt, T., 1985, Structure of the marine ecosystem: Its allometric basis, in: “Ecosystem Theory for Biological Oceanography,” R.E Ulanowicz and T. Platt, eds., Can. Bull. Fish. Aquat. Sci., 213:55.Google Scholar
  91. Platt, T., and Denman, K. L., 1977, Organization in the pelagic ecosystem, Helgolander wiss. Meeresunters, 30:575.CrossRefGoogle Scholar
  92. Platt, T., and Denman, K. L., 1978, The structure of pelagic marine ecosystems, Rapp. P.-V. Reun. Cons. Perm. Int. Explor. Mer., 173:60.Google Scholar
  93. Platt, T., and Silvert, W., 1981, Ecology, physiology, allometry and dimensionality, J. Theor. Biol, 93:885.CrossRefGoogle Scholar
  94. Platt, T., Subba Rao, D. V., and Irwin, B., 1983, Photosynthesis of picoplankton in the oligotrophic ocean, Nature, 301:702.CrossRefGoogle Scholar
  95. Platt, T., Lewis, M., and Geider, R., 1984, Thermodynamics of the pelagic ecosystem: Elementary closure conditions for biological production in the open ocean, in: “Flows of Energy and Materials in Marine Ecosystems,” M.J.R. Fasham, ed., Plenum, New York.Google Scholar
  96. Probyn, T. A., 1985, Nitrogen uptake by size-fractionated phytoplankton populations in the southern Benguela upwelling system, Mar. Ecol. Prog. Ser., 22:249.CrossRefGoogle Scholar
  97. Probyn, T. A., and Painting, S. J., 1985, Nitrogen uptake by size-fractionated phytoplankton populations in Antarctic surface waters, Limnol. Oceanogr., 30:1327.CrossRefGoogle Scholar
  98. Raimbault, P., Rodier, M., and Taupier-Letage, I., 1988, Size fraction of phytoplankton in the Ligurian Sea and the Algerian Basin (Mediterranean Sea): Size distribution versus total concentration, Mar. Microb. Food Webs, 3:1.Google Scholar
  99. Raven, J. A., 1986, Physiological consequences of extremely small size for autotrophic organisms in the sea, in: “Photosynthetic Picoplankton,” T. Platt and W.K. W. Li., eds., Can. Bull. Fish. Aquat. Sci., 214:583.Google Scholar
  100. Rodriguez, J., and Mullin, M. M., 1986, Relation between biomass and body weight of plankton in a steady-state oceanic ecosystem, Limnol. Oceanogr., 31:316.CrossRefGoogle Scholar
  101. Ronner, U., Sorennsson, F., and Holm-Hansen, O., 1983, Nitrogen assimilation by phytoplankton in the Scotia Sea, Polar Biol., 2:137.CrossRefGoogle Scholar
  102. Schlesinger, D. A., Molot, L. A., and Shuter, B. J., 1981, Specific growth rates of freshwater algae in relation to cell size and light intensity, Can. J. Fish. Aquat. Sci., 38:1052.CrossRefGoogle Scholar
  103. Sheldon, R. W., Prakash, A., and Sutcliffe, W. H., 1972, The size distribution of particles in the ocean, Limnol. Oceanogr., 17:327.CrossRefGoogle Scholar
  104. Sheldon, R. W., and Parsons, T. R., 1967, A continuous size spectrum for particulate matter in the sea, J. Fish. Res. Bd. Can., 24:909.CrossRefGoogle Scholar
  105. Sherr, E. B., Sherr, B. F., Berman, T., and McCarthy, J. J., 1982, Differences in nitrate and ammonia uptake among components of a phytoplankton population, J. Plankton Res., 4:961.CrossRefGoogle Scholar
  106. Silvert, W., and Platt, T., 1978, Energy flux in the pelagic ecosystem: A time-dependent equation, Limnol. Oceanogr., 23:813.CrossRefGoogle Scholar
  107. Silvert, W., and Platt, T., 1980, Dynamic energy flow model of the particle size distribution in pelagic ecosystems, in: “Evolution and Ecology of Zooplankton Communities,” W. Charles Kerfoot, ed., The University Press of New England, N.H.Google Scholar
  108. Smith, J. C., Platt, T., Li, W. W. K., Home, E. H. P., Harrison, W. G., Subba Rao, D. U., and Irwin, B. P., 1985, Arctic marine photoautrotophic picoplankton, Mar. Ecol. Prog. Ser., 20:207.CrossRefGoogle Scholar
  109. Sommer, U., 1989, Maximal growth rates of Antarctic phytoplankton: Only weak dependence on cell size, Limnol. Oceanogr., 34:1109.CrossRefGoogle Scholar
  110. Sprules, W. G., and Munawar, M., 1986, Plankton size spectra in relation to ecosystem productivity, size, and perturbation, Can. J. Fish. Aquat. Sci., 43:1789.CrossRefGoogle Scholar
  111. Sprules, W. G., Casselman, J. M., and Shuter, B. J., 1983, Size distribution of pelagic particles in lakes, Can. J. Fish. Aquat. Sci., 40:1761.CrossRefGoogle Scholar
  112. Strathmann, R. R., 1967, Estimating the organic carbon content of phytoplankton from cell volume or plasma volume, LimnoL Oceanogr., 12:411.CrossRefGoogle Scholar
  113. Sunda, W. G., Swift, D. G., and Huntsman, S. A., 1991, Low iron requirement in oceanic phytoplankton, Nature, 351:55.CrossRefGoogle Scholar
  114. Takahashi, M., and Bienfang, P. K., 1983, Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters, Mar. Biol., 76:203.CrossRefGoogle Scholar
  115. Taylor, A. H., and Joint, I., 1990, A steady state analysis of the ‘microbial loop’ in stratified systems, Mar. Ecol. Prog. Ser., 59:1.CrossRefGoogle Scholar
  116. Urbach, E. Robertson, D., and Chisholm, S. W., 1991, Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation, Nature, in press.Google Scholar
  117. Venrick, E. L., 1974, The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre, Limnol Oceanogr., 19:437.CrossRefGoogle Scholar
  118. Villareal, T. A., and Carpenter, E. J., 1989, Nitrogen fixation, suspension characteristics and chemical composition of Rhizosolenia mats in the central N. Pacific Gyre, Biol. Oceanogr., 6:327.Google Scholar
  119. Villareal, T. A., 1988, Positive buoyancy in the oceanic diatom Rhizosolenia debyana H. Peragallo, Deep-Sea. Res., 35:1037.CrossRefGoogle Scholar
  120. Waterbury, J. B., Watson, S. W., Valois, F. W., and Franks, D. G., 1986, Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus, in: “Photosynthetic Picoplankton,” T. Platt and W.K.W. Li., eds., Can. Bull Fish. Aquat. Sci., 214:583.Google Scholar
  121. Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31:998.CrossRefGoogle Scholar
  122. Yentsch, C. S., and Phinney, D. A., 1989, A bridge between ocean optics and microbial ecology, Limnol. Oceanogr., 34:1694.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Sallie W. Chisholm
    • 1
  1. 1.48-425 Ralph M. Parsons LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations