Bio-Optical Models and the Problems of Scaling

  • Robert R. Bidigare
  • Barbara B. Prézelin
  • Raymond C. Smith
Part of the Environmental Science Research book series (ESRH, volume 43)


Historically, the construction of global maps of ocean productivity has been a difficult task (Berger, 1989). Representative, precise, and accurate measurements of carbon fixation rates have been hampered by the errors associated with methodological problems and sampling limitations (Jahnke, 1990). The frustration of biological oceanographers in dealing with this issue was best summarized by Eppley (1980) during the first ‘Primary Productivity in the Sea’ symposium over a decade ago: “These disparate results beg for reconciliation as they suggest an order of magnitude uncertainty in the rate of primary production in the central oceans. Is it of the order 50–150 mg C m−2 d−1 as the standard 14C data have suggested for twenty years or is it 1–2 g C m−2 d−1 as the diel oxygen and POC changes and the PIT collections imply?” While this issue has yet to be completely resolved, considerable progress has been made during the last decade towards the reconciliation of differences in primary productivity estimates based on the standard 14C-labeling technique (Steeman Nielsen, 1952) and those based on geochemical tracer distributions (Jenkins and Goldman, 1985; Williams and Robertson, 1991). It appears that systematic errors in the different methodologies used to determine rates of oxygen production and carbon fixation contribute to observations of high photosynthetic quotients (mol O2 evolved per CO2 fixed) for phytoplankton communities (Laws, 1991; Prézelin and Glover, 1991; Williams and Robertson, 1991). In addition, when care is taken to minimize trace metal contamination (Fitzwater et al., 1982), avoid the toxic effects of latex and neoprene rubber closure mechanisms of Niskin® bottles (Price et al., 1986; Williams and Robertson, 1989), and incubate seawater samples under the appropriate spectral distribution of light (Laws et al., 1990), then 14C-measured rates of primary productivity for the central Pacific Ocean are several fold higher than historical values (i.e., 428 ± 249 mg C m−2 d−1, n = 11, 24 hour simulated in situ incubations, Station ALOHA, October 1988 to November 1989, HOT program, 1990).


Phytoplankton Community Euphotic Zone Marine Phytoplankton Phytoplankton Pigment Emiliania Huxleyi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, J., 1981, The undulating oceanographic recorder Mark 2, J. Plankton Res., 3:551.CrossRefGoogle Scholar
  2. Alberte, R. S., Wood, A. M., Kursar, T. A., and Guillard, R. R. L., 1984, Novel phyco-erythrins in marine Synechococcus spp., Plant Physiol., 75:732.PubMedCrossRefGoogle Scholar
  3. Baker, K. S., and Smith, R. C., 1982, Bio-optical classification and model of natural waters. 2, Limnol. Oceanogr., 27:500.CrossRefGoogle Scholar
  4. Balch, W. M., Abbott, M. R., and Eppley, R. W., 1989a, Remote sensing of primary production, I, A comparison of empirical and semi-analytical algorithms, Deep-Sea Res., 36:281.CrossRefGoogle Scholar
  5. Balch, W. M., Eppley, R. W., and Abbott, M. R., 1989b, Remote sensing of primary production, II, A semi-analytical algorithm based on pigments, temperature and light, Deep-Sea Res., 36:1201.CrossRefGoogle Scholar
  6. Bannister, T. T., and Weidemann, A. D., 1984, The maximum quantum yield of phytoplankton photosynthesis in situ, J. Plankton Res., 6:275.CrossRefGoogle Scholar
  7. Berger, W. H., 1989, Global maps of ocean productivity, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  8. Berner, T., Dubinsky, Z., Wyman, K., and Falkowski, P. G., 1989, Photoadaptation and the “package” effect in Dunaliella tertiolecta (Chlorophyceae), J. Phycol., 25:70.CrossRefGoogle Scholar
  9. Bidigare, R. R., 1989, Photosynthetic pigment composition of the brown tide alga: Unique chlorophyll and carotenoid derivatives, in: “Novel Phytoplankton Blooms,” E. Cosper, E.J. Carpenter and M. Bricelj, eds., Coastal and Estuarine Studies, Vol. 35, Springer-Verlag, Berlin.Google Scholar
  10. Bidigare, R. R., Frank, T. J., Zastrow, C., and Brooks, J. M., 1986, The distribution of algal chlorophylls and their degradation products in the Southern Ocean, Deep-Sea Res., 33:923.CrossRefGoogle Scholar
  11. Bidigare, R. R., Kennicutt II, M. C., Ondrusek, M. E., Keller, M. D., and Guillard, R. R. L., 1990c, Novel chlorophyll-related compounds in marine phytoplankton: Distributions and geochemical implications, Energy & Fuels, 4:653.CrossRefGoogle Scholar
  12. Bidigare, R. R., Marra, J., Dickey, T. D., Iturriaga, R., Baker, K. S., Smith, R. C., and Pak, H., 1990b, Evidence for phytoplankton succession and chromatic adaptation in the Sargasso Sea during springtime 1985, Mar. Ecol. Prog. Ser., 60:113.CrossRefGoogle Scholar
  13. Bidigare, R.R., Ondrusek, M.E., and Brooks, J.M., 1991, Influence of the Orinoco River outflow on distributions of algal pigments in the Caribbean Sea, J. Geophys. Res. (in press).Google Scholar
  14. Bidigare, R. R., Ondrusek, M. E., Morrow, J. H., and Kiefer, D. A., 1990a, In vivo absorption properties of algal pigments, Proc. SPIE Ocean Opt. X, 1302:290.CrossRefGoogle Scholar
  15. Bidigare, R. R., Morrow, J. H., and Kiefer, D. A., 1989a, Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea, J. Mar. Res., 47:323.CrossRefGoogle Scholar
  16. Bidigare, R. R., Schofield, O., and Prézelin, B. B., 1989b, Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2), Mar. Ecol. Prog. Ser., 56:177.CrossRefGoogle Scholar
  17. Bidigare, R. R., Smith, R. C., Baker, K. S., and Marra, J., 1987, Oceanic primary production estimates from measurements of spectral irradiance and pigment concentrations, Global Biogeochem. Cycles, 1:171.CrossRefGoogle Scholar
  18. Bishop, J. K. B., and Rossow, W. B., 1991, Spatial and temporal variability of global surface solar irradiance, J. Geophys. Res. (in press).Google Scholar
  19. Bjørnland, T., Liaaen-Jensen, S., and Throndsen, J., 1989, Carotenoids of the marine chrysophyte Pelagococcus subviridis, Phytochemistry, 28:3347.CrossRefGoogle Scholar
  20. Booth, C. R., and Smith, R. C., 1988, Moorable spectroradiometer in the Biowatt experiment, Proc. SPIE Ocean Opt. IX, 925:176.CrossRefGoogle Scholar
  21. Brown, O. B., Evans, R. H., Gordon, H. R., Smith, R. C., and Baker, K. S., 1985, Blooming off the U.S. coast: A satellite description, Science, 229:163.PubMedCrossRefGoogle Scholar
  22. Campbell, J. W., Yentsch, C. S., and Esaias, W. E., 1986, Dynamics of phytoplankton patches on Nantucket Shoals: An experiment involving aircraft, ships and buoys, in: “Lecture Notes on Coastal and Estuarine Studies,” Vol. 17, J. Bowman, M. Yentsch and W.T. Peterson, eds., Springer-Verlag, Berlin.Google Scholar
  23. Chalker, B. E., 1980, Modelling light saturation curves for photosynthesis: An exponential function, J. Theor. Biol., 84:205.PubMedCrossRefGoogle Scholar
  24. Chisholm, S. W., this volume.Google Scholar
  25. Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B., and Welschmeyer, N. A., 1988, A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, 334:340.CrossRefGoogle Scholar
  26. Collins, D. J., Kiefer, D. A., SooHoo, J. B., Stallings, C., and Yang, W., 1986, A model for the use of satellite remote sensing for the measurement of primary production in the ocean, Proc. SPIE Ocean Opt. VIII, 637:335.CrossRefGoogle Scholar
  27. Cullen, J. J., 1990, On models of growth and photosynthesis in phytoplankton, Deep-Sea Res., 37:667.CrossRefGoogle Scholar
  28. Cullen, J. J., and Lewis, M. R., 1988, The kinetics of algal photoadaptation in the context of vertical mixing, J. Plankton Res., 10:1039.CrossRefGoogle Scholar
  29. Cullen, J. J., Lewis, M. R., Davis, C. O., and Barber, R. T., 1991, Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific, J. Geophys. Res., in press.Google Scholar
  30. Dickey, T. D., 1988, Recent advances and future directions in multi-disciplinary in situ oceanographic measurement systems, in: “Towards a Theory on Biological-Physical Interactions in the World Ocean,” B. J. Rothschild, ed., Kluwer Academic, Dordrecht.Google Scholar
  31. Dickey, T.D., 1990, Physical-optical-biological scales relevant to recruitment in large marine ecosystems, in: “Large Marine Ecosystems: Patterns, Processes, and Yields,” K. Sherman, L. M. Alexander, and B. D. Gold, eds., AAAS, Washington, D. C.Google Scholar
  32. Dickey, T. D., 1991, The emergence of concurrent high resolution physical and biooptical measurements in the upper ocean and their applications, Rev. of Geophys., in press.Google Scholar
  33. Dickey, T. D., Marra, J., Granata, T., Langdon, C., Hamilton, M., Wiggert, J., Siegel, D. A., and Bratkovich, A., 1991, Concurrent high resolution bio-optical and physical time series observations in the Sargasso Sea during the spring of 1987, J. Geophys. Res., 96:8643.CrossRefGoogle Scholar
  34. Dubinsky, Z., Falkowski, P. G., and Wyman. K., 1986, Light harvesting and utilization by phytoplankton, Plant Cell Physiol., 27:1335.Google Scholar
  35. Eckardt, C. B., Carter, J. F., and Maxwell, J. R., 1990, Combined liquid chromatography/mass spectrometry of tetrapyrroles of sedimentary significance, Energy & Fuels, 4:741.CrossRefGoogle Scholar
  36. Eppley, R. W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  37. Eppley, R. W., and Renger, E. H., 1988, Nanomolar increases in surface layer nitrate concentration following a small wind event, Deep-Sea Res., 35:1119.CrossRefGoogle Scholar
  38. Eppley, R. W., Stewart, E., Abbott, M. R., and Heyman, U., 1985, Estimating ocean production from satellite chlorophyll: Introduction to regional differences and statistics for the southern California bight, J. Plankton Res., 7:57.CrossRefGoogle Scholar
  39. Esaias, W. E., 1980, Remote sensing of oceanic phytoplankton: Present capabilities and future goals, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  40. Falkowski, P. G., this volume.Google Scholar
  41. Falkowski, P. G., Dubinsky, Z., and Wyman, K., 1985, Growth-irradiance relationships in phytoplankton, Limnol. Oceanogr., 30:311.CrossRefGoogle Scholar
  42. Fawley, M. W., 1989, A new form of chlorophyll c involved in light-harvesting, Plant. Physiol., 91:727.PubMedCrossRefGoogle Scholar
  43. Fiksdahl, A., Bjørnland, T., and Liaaen-Jensen, S., 1984, Algal carotenoids with novel end groups, Phytochemistry, 23:649.CrossRefGoogle Scholar
  44. Fitzwater, S. E., Knauer, G. A., and Martin, J. H., 1982, Metal contamination and its effect on primary production measurements, Limnol. Oceanogr., 27:544.CrossRefGoogle Scholar
  45. Fookes, C. J. R., and Jeffrey, S. W., 1989, The structure of chlorophyll c 3, a novel marine photosynthetic pigment, J. Chem. Soc, Chem. Commun., 18:27.Google Scholar
  46. Foss, P., Guillard, R. R. L., and Liaaen-Jensen, S., 1984, Prasinoxanthin — A chemosystematic marker for algae, Phytochemistry, 23:1629.CrossRefGoogle Scholar
  47. Frew, N. M., Johnson, C. G., and Bromund, R. H., 1988, Supercritical fluid chromatography — Mass spectrometry of carotenoid pigments, in: “Supercritical Fluid Extraction and Chromatography,” B. A. Charpentier and M. R. Sevenants, eds., ACS Symposium Series 366, American Chemical Society, Washington, D.C.Google Scholar
  48. Frouin, R., Lingner, D. W., Gautier, C., Baker, K. S., and Smith, R. C., 1989, A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface, J. Geophys. Res., 94:9731.CrossRefGoogle Scholar
  49. Garside, C., 1985, The vertical distribution of nitrate in open ocean surface water, Deep-Sea Res., 32:723.CrossRefGoogle Scholar
  50. Gautier, C., Diak, G. R., and Masse, S., 1980, A simple physical model to estimate incident solar radiation at the sea surface from GOES satellite data, J. Appl. Meteor., 19:1005.CrossRefGoogle Scholar
  51. Geider, R. J., Platt, T., and Raven, J. A., 1986, Size dependence of growth and photosynthesis in diatoms: A synthesis, Mar. Ecol. Prog. Ser., 30:93.CrossRefGoogle Scholar
  52. Gieskes, W. W. C., and Kraay, G. W., 1983a, Unknown chlorophyll a derivatives in the North Sea and tropical Atlantic Ocean revealed by HPLC analysis, Limnol. Oceanogr., 28:757.CrossRefGoogle Scholar
  53. Gieskes, W. W. C., and Kraay, G. W., 1983b, Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments, Mar. Biol., 75:179.CrossRefGoogle Scholar
  54. Gieskes, W. W. C., and Kraay, G. W., 1984, Phytoplankton, its pigments, and primary production at a central North Sea station in May, July and September 1981, Neth. J. Sea Res., 18:51.CrossRefGoogle Scholar
  55. Gieskes, W. W. C., and Kraay, G. W., 1986a, Floristic and physiological differences between the shallow and the deep nanophytoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments, Mar. Biol., 91:567.CrossRefGoogle Scholar
  56. Gieskes, W. W. C., and Kraay, G. W., 1986b, Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellate Corymbellus aureus during spring bloom in the open northern North Sea in 1983, Mar. Biol., 92:45.CrossRefGoogle Scholar
  57. Gieskes, W. W. C., Kraay, G. W., Nontji, A., Setiapermana, D., and Sutomo, 1988, Monsoonal alteration of a mixed and a layered structure in the phytoplankton of the euphotic zone of the Banda Sea (Indonesia): A mathematical analysis of algal pigment fingerprints, Neth. J. Sea Res., 22:123.CrossRefGoogle Scholar
  58. Glover, H. E., 1985, The physiology and ecology of the marine cyanobacterial genus Synechococcus, in: “Advances in Aquatic Microbiology,” Vol. 3, H. W. Jannasch and P. J. le B. Williams, eds., Academic Press, London.Google Scholar
  59. Glover, H. E., Prézelin, B. B., Campbell, L., and Wyman, M., 1988a, Pico-and ultraplankton Sargasso Sea communities: variability and comparative distribution of Synechococcus spp. and algae, Mar. Ecol. Prog. Ser., 49:127.CrossRefGoogle Scholar
  60. Glover, H. E., Prézelin, B. B., Campbell, L., Wyman, M., and Garside, C., 1988b, A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water, Nature, 331:161.CrossRefGoogle Scholar
  61. Goericke, R., 1990, “Pigments as ecological tracers for the study of the abundance and growth of marine phytoplankton,” Ph. D. dissertation, Harvard University, Cambridge.Google Scholar
  62. Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., and Clark, D. K., 1988, A semianalytic radiance model of ocean color, 1988, J. Geophys. Res., 93:10,909.Google Scholar
  63. Gordon, H. R., Clark, D., Mueller, J. L., and Hovis, W. A., 1980, Phytoplankton pigments from Nimbus-7 coastal zone color scanner: Comparison with surface measurements, Science, 210:63.PubMedCrossRefGoogle Scholar
  64. Gordon, H. R., and McCluney, W. R., 1975, Estimation of the depth of sunlight penetration in the sea for remote sensing, Appl. Opt., 14:413.PubMedCrossRefGoogle Scholar
  65. Gregg, W. W., and Carder, K. L., 1990, A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnol. Oceanogr., 35:1657.CrossRefGoogle Scholar
  66. Haardt, H., and Maske, H., 1987, Specific in vivo absorption coefficient of chlorophyll a at 675 nm, Limnol. Oceanogr., 32:608.CrossRefGoogle Scholar
  67. Harris, G. P., 1986, “Phytoplankton Ecology: Structure, Function and Fluctuation,” Chapman and Hill, London.CrossRefGoogle Scholar
  68. Harrison, W. G., Platt, T., and Lewis, M. R., 1985, The utility of light-saturation models for estimating marine productivity in the field: A comparison with conventional “simulated” in situ methods, Can. J. Fish. Aquat. Sci., 42:864.CrossRefGoogle Scholar
  69. Herman, A. W., and Platt, T., 1986, Primary production profiles in the ocean: Estimation from a chlorophyll/light model, Oceanol. Acta, 9:31.Google Scholar
  70. Hooks, C. E., Bidigare, R. R., Keller, M. D., and Guillard, R. R. L., 1988, Coccoid eukaryotic marine ultraplankters with four different HPLC pigment signatures, J. Phycol., 24:571.Google Scholar
  71. HOT Program, 1990, “Data Report 1,” School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu.Google Scholar
  72. Hovis, W. A., Clark, D. K., Anderson, F. P., Austin, R. W., Wilson, W. H., Baker, E. T., Ball, D., Gordon, H. R., Mueller, J. L., El-Sayed, S. Z., Strun, B., Wrigley, R. C., and Yentsch, C. S., 1980, Nimbus-7 coastal zone color scanner: System description and initial imagery, Science, 210:60.PubMedCrossRefGoogle Scholar
  73. Iturriaga, R., Mitchell, B. G., and Kiefer, D. A., 1988, Microphotometric analysis of individual particle absorption spectra, Limnol. Oceanogr., 33:128.CrossRefGoogle Scholar
  74. Iturriaga, R., and Siegel, D. A., 1989, Microphotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea, Limnol. Oceanogr., 34:1706.CrossRefGoogle Scholar
  75. Jahnke, R. A., 1990, Ocean flux studies: A status report, Rev. of Geophys., 28:381.CrossRefGoogle Scholar
  76. Jassby, A. D., and Platt, T., 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21:540.CrossRefGoogle Scholar
  77. Jeffrey, S. W., 1989, Chlorophyll c pigments and their distribution in the chromophyte algae, in: “The Chromophyte Algae: Problems and Perspectives,” J.C. Green, B.S.C. Leadbeater, and W.L. Diver, eds., Clarendon Press, Oxford.Google Scholar
  78. Jenkins, W. J., and Goldman, J. C., 1985, Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Mar. Res., 43:465.CrossRefGoogle Scholar
  79. Kerr, R. A., 1986, The ocean’s deserts are blooming, Science, 232:1345.PubMedCrossRefGoogle Scholar
  80. Kiefer, D. A., and Mitchell, B. G., 1983, A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency, LimnoL Oceanogr., 28:770.CrossRefGoogle Scholar
  81. Kiefer, D. A., and SooHoo, J. B., 1982, Spectral absorption by marine particles of coastal waters of Baja California, Limnol. Oceanogr., 27:492.CrossRefGoogle Scholar
  82. Kirk, J. T. O., 1983, “Light and Photosynthesis in Aquatic Ecosystems”, Cambridge University Press, New York.Google Scholar
  83. Kishino, M., Booth, C. R., and Okami, N., 1984, Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water, Limnol. Oceanogr., 29:340.CrossRefGoogle Scholar
  84. Kishino, M., Okami, N., Takahashi, M., and Ichimura, S., 1986, Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea, Limnol. Oceanogr., 31:557.CrossRefGoogle Scholar
  85. Kishino, M., Takahashi, N., Okami, N., and Ichimura, S., 1985, Estimation of the spectral absorption coefficients of phytoplankton in the sea, Bull. Mar. Sci., 37:634.Google Scholar
  86. Klein, P., and Coste, B., 1984, Effects of wind stress variability on nutrient transport into the mixed layer, Deep-Sea Res., 431:21.CrossRefGoogle Scholar
  87. Laws, E. A., 1991, Photosynthetic quotients, new production and net community production in the open ocean, Deep-Sea Res., 38:143.CrossRefGoogle Scholar
  88. Laws, E. A., DiTullio, G. R., Carder, K. L., Betzer, P. R., and Hawes, S., 1990, Primary production in the deep blue sea, Deep-Sea Res., 37:715.CrossRefGoogle Scholar
  89. Lewis, M. R., Cullen, J. J., and Platt, T., 1984, Relationships between vertical mixing and photoadaptation of phytoplankton: Similarity criteria, Mar. Ecol. Prog. Ser., 15:141.CrossRefGoogle Scholar
  90. Lewis, M. R., Warnock, R. E., Irwin, B., and Platt, T., 1985b, Measuring photosynthetic action spectra of natural phytoplankton populations, J. Phycol. 21:310.CrossRefGoogle Scholar
  91. Lewis, M. R., Warnock, R. E., and Platt, T., 1985a, Absorption and photosynthetic action spectra for natural phytoplankton populations, Limnol. Oceanogr., 30:794.CrossRefGoogle Scholar
  92. Lewis, M. R., and Smith, J. C., 1983, “Photosynthetron”: a small volume, short-incubation time method for measurement of photosynthesis as a function of incident irradiance, Mar. Ecol. Prog. Ser., 13:99.CrossRefGoogle Scholar
  93. Liaaen-Jensen, S., 1985, Carotenoids of lower plants — Recent Progress, Pure Appl. Chem., 57:649.CrossRefGoogle Scholar
  94. Lohrenz, S. E., Arnone, R. A., Wiesenburg, D. A., and DePalma, I. P., 1988, Satellite detection of transient enhanced primary production in the western Mediterranean Sea, Nature, 335:245.CrossRefGoogle Scholar
  95. Lohrenz, S. E., Knauer, G. A., Asper, V. L., Tuel, M., Knapp, A. H., and Michaels, A. F., 1991, Seasonal variability in primary production and particle flux in the northwestern Sargasso Sea: U.S. JGOFS Bermuda Atlantic time series, Deep-Sea Res., in press.Google Scholar
  96. Mantoura, R. F. C., and Llewellyn, C. A., 1983, The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography, Anal. Chim. Acta, 151:297.CrossRefGoogle Scholar
  97. Marra, J., and Heinemann, K. R., 1987, Primary production in the North Pacific Central Gyre: Some new measurements based on 14C, Deep-Sea Res., 34:1821.CrossRefGoogle Scholar
  98. Maske, H., and Haardt, H., 1987, Quantitative in vivo absorption spectra of phytoplankton: Detrital absorption and comparison with fluorescence excitation spectra, Limnol. Oceanogr., 32:620.CrossRefGoogle Scholar
  99. McClain, C. R., Pietrafesa, L. J., and Yoder, J. A., 1984, Observations of Gulf Stream induced and wind driven upwelling in the Georgia bight using ocean color and infrared imagery, J. Geophys. Res., 89:3705.CrossRefGoogle Scholar
  100. Mitchell, B. G., 1987, “Ecological implications of variability in marine particulate absorption and fluorescence excitation spectra,” Ph. D. dissertation, University of Southern California, Los Angeles.Google Scholar
  101. Mitchell, B. G., 1990, Algorithms for determining the absorption coefficient for aquatic particles using the quantitative filter technique, Proc. SPIE Ocean Opt. X, 1302:13.CrossRefGoogle Scholar
  102. Mitchell, B. G., and Kiefer, D. A., 1988a, Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean, Deep-Sea Res., 35:665.CrossRefGoogle Scholar
  103. Mitchell, B. G., and Kiefer, D. A., 1988b, Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton, Deep-Sea Res., 35:639.CrossRefGoogle Scholar
  104. Morel, A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters), J. Geophys. Res., 93:10,749.Google Scholar
  105. Morel, A., 1991, Light and marine photosynthesis: A spectral model with geochemical and climatological implications, Prog. Oceanogr., 26:263.CrossRefGoogle Scholar
  106. Morel, A., and Bricaud, A., 1981, Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton, Deep-Sea Res., 28:1375.CrossRefGoogle Scholar
  107. Morel, A., and Bricaud, A., 1986, Inherent optical properties of algal cells including pico-plankton: Theoretical and experimental results, in: “Photosynthetic Picoplankton,” T. Platt and W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci., 214:521.Google Scholar
  108. Morel, A., Lazzara, L., and Gostan, J., 1987, Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color), Limnol. Oceanogr., 32:1066.CrossRefGoogle Scholar
  109. Morris, I., 1981, “The Physiological Ecology of Phytoplankton,” Blackwell Sc. Publ., Berkley.Google Scholar
  110. Morrow, J. H., Chamberlin, W. S., and Kiefer, D. A., 1989, A two-component description of spectral absorption by marine particles, Limnol. Oceanogr., 34:1500.CrossRefGoogle Scholar
  111. Myers, J., 1980, On the algae: Thoughts about physiology and measurements of efficiency, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  112. Nelson, J. R., and Wakeham, S. G., 1989, A phytol-substituted chlorophyll c from Emiliania huxleyi (Prymnesiophyceae), J. Phycol., 25:761.CrossRefGoogle Scholar
  113. Nelson, N. B., and Prézelin, B. B., 1990, Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (= Glenodinium sp.), Mar. Ecol. Prog. Ser., 63:37.CrossRefGoogle Scholar
  114. Nelson, N. B., Prézelin, B. B., Bidigare, R. R., Smith, R. C., and Baker, K. S., 1991, Spatial and temporal variability of phytoplankton spectral absorption properties in the Southern California Bight, Deep-Sea Res., in press.Google Scholar
  115. Ondrusek, M. E., Bidigare, R. R., Sweet, S. T., DeFreitas, D. A., and Brooks, J. M., 1991, Distribution of algal pigments in the North Pacific Ocean in relation to physical and optical variability, Deep-Sea Res., 38:243.CrossRefGoogle Scholar
  116. Ong, L. J., Glazer, A. N., and Waterbury, J. B., 1984, An unusual phycoerythrin from a marine cyanobacterium, Science, 224:80.PubMedCrossRefGoogle Scholar
  117. Pahl-Wostl, C., and Imboden, D. M., 1990, DYPHORA — A dynamic model for the rate of photosynthesis of algae, J. Plankton Res., 12:1207.CrossRefGoogle Scholar
  118. Platt, T., 1986, Primary production of the ocean water column as a function of surface light intensity: Algorithms for remote sensing, Deep-Sea Res., 33:149.CrossRefGoogle Scholar
  119. Platt, T., Gallegos, C. L., and Harrison, W. G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38:687.Google Scholar
  120. Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K., Sathyendranath, S., Smith, R. E., and Vezina, A. F., 1989, Biological production of the oceans: The case for a consensus, Mar. Ecol. Prog. Ser., 52:77.CrossRefGoogle Scholar
  121. Platt, T., and Jassby, A. D., 1976, The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton, J. Phycol., 12:421.Google Scholar
  122. Platt, T., Lewis, M. R., and Geider, R., 1984, Thermodynamics of the pelagic ecosystem: Elementary closure conditions for biological production in the open ocean, in: “Flows of Energy and Materials in Marine Ecosystems,” M. J. R. Fasham, ed., Plenum Press, New York.Google Scholar
  123. Platt, T., and Li, W. K. W., eds., 1986, “Photosynthetic Picoplankton,”, Can. Bull. Fish. Aquat. Sci., 214:583.Google Scholar
  124. Platt, T., and Sathyendranath, S., 1988, Oceanic primary production: Estimation by remote sensing at local and regional scales, Science, 241:1613.PubMedCrossRefGoogle Scholar
  125. Platt, T., Sathyendranath, S., and Ravindran, P., 1990, Primary production by phytoplankton: Analytic solutions for daily rates per unit area of water surface, Proc. R. Soc. Lond. B, 241:101.CrossRefGoogle Scholar
  126. Platt, T., Sathyendranath, S., Caverhill, C. M., and Lewis, M. R., 1988, Ocean primary production and available light: Further algorithms for remote sensing, Deep-Sea Res., 35:855.CrossRefGoogle Scholar
  127. Post, A. F., Dubinsky, Z., Wyman, K., and Falkowski, P. G., 1985, Physiological responses of a marine planktonic diatom to transitions in growth irradiance, Mar. Ecol. Prog. Ser., 25:141.CrossRefGoogle Scholar
  128. Prézelin, B. B., 1991, Diel periodicity in phytoplankton productivity, Hydrobiol. (in press).Google Scholar
  129. Prézelin, B. B., Bidigare, R. R., Matlick, A., Putt, M., and Ver Hoven, B., 1987, Diurnal patterns of size-fractioned primary productivity across a coastal front, Mar. Biol., 96:591.CrossRefGoogle Scholar
  130. Prézelin, B. B., and Glover, H. E., 1991, Variability in time/space estimates of phytoplankton, biomass and productivity in the Sargasso Sea, J. Plankton Res., 13S:45.Google Scholar
  131. Prézelin, B. B., Putt, M., and Glover, H. E., 1986, Diurnal patterns in photosynthetic capacity and depth-dependent photosynthesis-irradiance relationships in Synechococcus spp. and larger phytoplankton in three water masses in the Northwest Atlantic Ocean, Mar. Biol., 91:205.CrossRefGoogle Scholar
  132. Prézelin, B. B., Tilzer, M. M., Schofield, O., and Haese, C., 1991, Review: Control of the production process of phytoplankton by the physical structure of the aquatic environment, Hydrobiol., in press.Google Scholar
  133. Price, N. M., Harrison, P. J., Landry, M. R., Azam, F., and Hall, K. J. F., 1986, Toxic effect of latex and Tygon tubing on phytoplankton, Zooplankton and bacteria, Mar. Ecol. Prog. Ser., 34:41.CrossRefGoogle Scholar
  134. Repeta, D. J., Simpson, D. J., Jorgensen, B. B., and Jannasch, H. W., 1989, Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea, Nature, 342:69.PubMedCrossRefGoogle Scholar
  135. Rodhe, W., 1965, Standard correlations between pelagic photosynthesis and light, in: “Primary Productivity in Aquatic Environments,” C. R. Goldman, ed., University of California Press, Berkeley.Google Scholar
  136. Ryther, J. H., 1956, Photosynthesis in the ocean as a function of light intensity, Limnol. Oceanogr., 1:61.CrossRefGoogle Scholar
  137. Ryther, J. H., and Yentsch, C. S., 1957, The estimation of phytoplankton production in the ocean from chlorophyll and light data, Limnol. Oceanogr., 2:281.Google Scholar
  138. Sathyendranath, S., Lazzara, L., and Prieur, L., 1987, Variations in the spectral values of specific absorption of phytoplankton, Limnol. Oceanogr., 32:403.CrossRefGoogle Scholar
  139. Sathyendranath, S., and Platt, T., 1989, Computation of aquatic primary production: Extended formalism to include effect of angular and spectral distribution of light, Limnol. Oceanogr., 34:188.CrossRefGoogle Scholar
  140. Sathyendranath, S., Platt, T., Caverhill, C. M., Warnock, R. E., and Lewis, M. R., 1989, Remote sensing of oceanic primary production: Computations using a spectral model, Deep-Sea Res., 36:431.CrossRefGoogle Scholar
  141. Schofield, O., Bidigare, R. R., and Prézelin, B. B., 1990, Chromatic photoadaptation and enhancement effects on wavelength-dependent quantum yield and productivity in the diatom Chaetoceros gracile and the prymnesiophyte Emiliania huxleyi, Mar. Ecol. Prog. Ser., 64:175.CrossRefGoogle Scholar
  142. Schofield, O., Prézelin, B. B., Smith, R. C., Stegmann, P., Nelson, N. B., Lewis, M. R., and Baker, K.S., 1991, Spectral photosynthesis, quantum yield, and radiation utilization efficiency across the Southern California Bight, Mar. Ecol. Prog. Ser., in press.Google Scholar
  143. Shannon, L. V., Mostert, S. A., Walters, N. M., and Anderson, F. P., 1983, Chlorophyll concentrations in the southern Benguel current region as determined by satellite (Nimbus-7 CZCS), J. Plankton Res., 5:565.CrossRefGoogle Scholar
  144. Siegel, D. A., Iturriaga, R., Bidigare, R. R., Smith, R. C., Pak, H., Dickey, T. D., Marra, J., and Baker, K. S., 1990, Meridional variations of the springtime phytoplankton community in the Sargasso Sea, 7. Mar. Res., 48:379.CrossRefGoogle Scholar
  145. Smith, R. C., 1981, Remote sensing and depth distribution of ocean chlorophyll, Mar. Ecol., 5:359.CrossRefGoogle Scholar
  146. Smith, R. C., and Baker, K. S., 1978, Optical classification of natural waters, Limnol. Oceanogr., 23:260.CrossRefGoogle Scholar
  147. Smith, R. C., and Baker, K. S., 1982, Oceanic chlorophyll concentrations determined by satellite (Nimbus-7 coastal zone color scanner), Mar. Biol., 66:269.CrossRefGoogle Scholar
  148. Smith, R. C., and Baker, K. S., 1984, The analysis of ocean optical data, Proc. SPIE Ocean Opt. VII, 489:119.CrossRefGoogle Scholar
  149. Smith, R. C. and Baker, K. S., 1986, The analysis of ocean optical data II, Proc. SPIE Ocean Opt. VIII, 637:95.CrossRefGoogle Scholar
  150. Smith, R. C., Bidigare, R. R., Prézelin, B. B., Baker, K. S., and Brooks, J. M., 1987b, Optical characterization of primary productivity across a coastal front, Mar. Biol., 96:563.CrossRefGoogle Scholar
  151. Smith, R. C., Booth, C. R., and Star, J. L., 1984, Oceanographic bio-optical profiling system, Appl. Opt., 23:2791.PubMedCrossRefGoogle Scholar
  152. Smith, R. C., Brown, O. B., Hoge, F. E., Baker, K. S., Evans, R. H., Swift, R. N., and Esaias, W. E., 1987a, Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring, Appl. Opt., 26:2068.PubMedCrossRefGoogle Scholar
  153. Smith, R. C., Eppley, R. W., and Baker, K. S., 1982, Correlation of primary production as measured aboard ship in southern California coastal waters and as estimated from satellite chlorophyll images, Mar. Biol., 66:281.CrossRefGoogle Scholar
  154. Smith, R. C., Prézelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., MacIntyre, S., Matlick, H. A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K., 1991c, Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters, Science, in press.Google Scholar
  155. Smith, R. C., Prézelin, B. B., Bidigare, R. R., and Baker, K. S., 1989, Bio-optical modeling of photosynthetic production in coastal waters, Limnol. Oceanogr., 34:1526.Google Scholar
  156. Smith, R. C., Wan, Z., and Baker, K. S., 1991b, Ozone depletion in Antarctica: Satellite and ground measurements, and modeling under clear-sky conditions, J. Geophys. Res., in press.Google Scholar
  157. Smith, R. C., Waters, K. J., and Baker, K. S., 1991a, Optical variability and pigment biomass in the Sargasso Sea as determined using deep-sea optical mooring data, J. Geophys. Res., 96:8665.CrossRefGoogle Scholar
  158. Steemann Nielsen, E., 1952, The use of radioactive carbon (14C) for measuring organic production in the sea, J. Cons. Cons. Int. Explor. Mer, 18:117.Google Scholar
  159. Stramski, D., and Morel, A., 1990, Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance, Deep-Sea Res., 37:245.CrossRefGoogle Scholar
  160. Tailing, J. F., 1957, The phytoplankton population as a compound photosynthetic system, New Phytol., 56:133.CrossRefGoogle Scholar
  161. Tailing, J. F., 1965, Comparative problems of phytoplankton production and photosynthetic productivity in a tropical and temperate lake, in: “Primary Productivity in Aquatic Environments,” C. R. Goldman, ed., University of California Press, Berkeley.Google Scholar
  162. Tyler, J. E., 1975, The in situ quantum efficiency of natural phytoplankton populations, Limnol. Oceanogr., 18:442.Google Scholar
  163. U.S. JGOFS, 1991, “Bio-optics in JGOFS,” U.S. JGOFS Planning Report No. 13, Woods Hole Oceanographic Institution, Woods Hole, in press.Google Scholar
  164. Waters, K. J., Smith, R. C., and Lewis, M. L., 1990, Avoiding ship-induced light-field perturbation in the determination of oceanic optical properties, Oceanography, 3:18.CrossRefGoogle Scholar
  165. Webb, W. L., Newton, M., and Starr, D., 1974, Carbon dioxide exchange of Alnus rubra: A mathematical model, Oecologia, 17:281.CrossRefGoogle Scholar
  166. Whitledge T.E., Bidigare, R. R., Zeeman, S., Sambrotto, R.N., Roscigno, P.F., Jensen, P.R., Brooks, J.M., Trees, C.C., and Veidt, D.M, 1988, Biological measurements and related chemical features in Soviet and U.S. regions of the Bering Sea, Continental Shelf Res., 8:1299.CrossRefGoogle Scholar
  167. Williams, P. J. le B., and Robertson, J. E., 1989, A serious inhibition problem from a Niskin sampler during plankton productivity studies, Limnol. Oceanogr., 34:1300.CrossRefGoogle Scholar
  168. Williams, P. J. le B., and Robertson, J. E., 1991, Overall planktonic oxygen and carbon dioxide metabolism: The problem of reconciling observations and calculations of photosynthetic quotients, J. Plankton Res., 13S:153.Google Scholar
  169. Yentsch, C. S., 1962, Measurement of visible light absorption by particulate matter in the ocean, Limnol. Oceanogr., 9:207.CrossRefGoogle Scholar
  170. Yentsch, C. S., and Phinney, D. A., 1988, Relationship between cross-sectional absorption and chlorophyll content in natural populations of marine phytoplankton, Proc. SPIE Ocean Opt. X, 1302:109.CrossRefGoogle Scholar
  171. Zimmerman, R. C., SooHoo, J. B., Kremer, J. N., and D’Argenio, D. Z., 1987, Evaluation of variance approximation techniques for non-linear photosynthesis-irradiance models, Mar. Biol., 95:209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Robert R. Bidigare
    • 1
  • Barbara B. Prézelin
    • 2
  • Raymond C. Smith
    • 3
  1. 1.Department of OceanographyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Department of Biological Sciences, Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA
  3. 3.Center for Remote Sensing and Environmental OpticsUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations