Techniques for Measuring Carbonic Anhydrase Activity in Vitro

The Electrometric Delta pH and pH Stat Methods
  • Raymond P. Henry

Abstract

The isozymes of carbonic anhydrase (CA) (EC 4.2.1.1.) catalyze the reversible hydration—dehydration of carbon dioxide and water, with H+ ions being transferred between the active site of the enzyme and a surrounding buffer.3,16,17 This results in a change in pH as the reaction proceeds toward equilibrium. With the advent of rapid-responding pH and reference electrodes coupled to sensitive pH meters, these changes in H+ ion concentration could be accurately measured. That measurement, which can be performed either directly or indirectly, forms the underlying principle upon which the electrometric methods for the assay of CA activity are built.

Keywords

Carbonic Anhydrase Reaction Vessel Buffer Concentration Dehydration Reaction Carbonic Anhydrase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinkman, R., 1933, J. Physiol. 80: 171–173.PubMedGoogle Scholar
  2. 2.
    Carter, M. J., 1972, Biol. Rev. 47: 465–513.PubMedCrossRefGoogle Scholar
  3. 3.
    Coleman, J. E., 1980, in: Biophysics and Physiology of Carbon Dioxide (C. Bauer, G. Gros, and H. Bartels, eds.), Springer-Verlag, New York, pp. 133–150.Google Scholar
  4. 4.
    Davis, R. P, 1963, Methods Biochem. Anal. 11: 307–327.PubMedCrossRefGoogle Scholar
  5. 5.
    Dodgson, S. i, Forster, R. E., Schwed, D. A., and Storey, B. T., 1983, J. Bio!. Chem. 258:76967701.Google Scholar
  6. 6.
    Edsall, J. T., 1968, in: CO 2 : Chemical, Biochemical, and Physiological Aspects (R. E. Forster, J. T. Rican, A. B. Otis, and F. J. W. Roughton, eds.), NASA SP #188, Washington, D.C., pp. 15–28.Google Scholar
  7. 7.
    Hansen, P, and Magid, E., 1966, Scand. J. Clin. Lab. Invest. 18: 21–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Henry, R. P, and Kormanik, G. A., 1985, J. Crust. Biol. 5: 234–241.CrossRefGoogle Scholar
  9. 9.
    Henry, R. P, and Camerion, J. N., 1982, J. Exp. Zool. 221: 309–321.CrossRefGoogle Scholar
  10. 10.
    Liebman, K. C., Alford, D., and Boudet, R. A., 1961, J. Pharmacol. Exp. Ther. 131: 271–274.Google Scholar
  11. 11.
    Maren, T. H., 1967, Physiol. Rev. 47: 595–781.PubMedGoogle Scholar
  12. 12.
    Maren, T. H., and Couto, E. 0., 1979, Arch. Biochem. Biophys. 196: 501–510.PubMedCrossRefGoogle Scholar
  13. 13.
    McIntosh, J. E., 1968, Biochem. J. 109: 203–207.PubMedGoogle Scholar
  14. 14.
    Philpot, F. J., and Philpot, J. St. L., 1936, Biochem. J. 30: 2191–2194.PubMedGoogle Scholar
  15. 15.
    Roughton, F. J. W, and Booth, V. H., 1946, Biochem. J. 40: 319–330.PubMedGoogle Scholar
  16. 16.
    Silverman, D. N., Tb, C. K., and Wynnns, G. C., 1980, in: Biophysics and Physiology Carbon Dioxide (C. Bauer, G. Gros, and H. Bartels, eds.), Springer-Verlag, New York, pp. 254–261.Google Scholar
  17. 17.
    MI, C. K., and Silverman, D. N., 1975, J. Am. Chem. Soc. 97: 5935–5936.CrossRefGoogle Scholar
  18. 18.
    Van Goor, H., 1948, Enzymologica 13: 73–164.Google Scholar
  19. 19.
    Wilbur, K. M., and Anderson, N. C., 1948, J. Biol. Chem. 176: 147–154.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Raymond P. Henry
    • 1
  1. 1.Department of Zoology and Wildlife ScienceAuburn UniversityAuburnUSA

Personalised recommendations