Carbonic Anhydrase and Skeletogenesis

  • Susan F. Silverton


In a variety of species, the biochemical pathways that control Ca2+ accumulation in the skeleton have been closely related to carbonic anhydrase (CA) activity. In addition, because bone is the most important reservoir for Ca2+ homeostasis, Ca2+ is reclaimed by dissolution of deposited mineral and matrix.5,10,22,47 This resorptive process also requires CA activity. While the more primitive exoskeletons rely on a mineral phase composed of CaCO3,6,55 vertebrates employ phosphate as the counter ion for mineralization.52–54 Localization of CA isoenzymes in invertebrate and vertebrate tissue is reviewed elsewhere.7,8,46


Carbonic Anhydrase Carbonic Anhydrase Activity Matrix Vesicle Carbonic Anhydrase Inhibitor Epiphyseal Growth Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R. E., Schraer, H., and Gay, C. V, 1982, Anat. Rec. 204: 9–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Baron, R., Neff, L., Louvard, D., and Courtoy, P J., 1983, J. Cell Biol. 97: 108.Google Scholar
  3. 3.
    Baron, R. E., 1988, 3rd International Conference on Chemistry and Biology of Mineralized Tissue, Chatham, Mass., Abstract 1.Google Scholar
  4. 4.
    Brinkman, R., 1934, J. Physiol. 80: 171–173.Google Scholar
  5. 5.
    Cao, H., and Gay, C. V, 1982, Experientia 41: 1472–1474.CrossRefGoogle Scholar
  6. 6.
    Carson, D. D., Farach, M. C., Earles, D. S., Decker, G. I., and Lennarz, W. J., 1985, Cell 41: 639–648.PubMedCrossRefGoogle Scholar
  7. 7.
    Carter, M. J., 1972, Biol. Rev. 47: 465–513.PubMedCrossRefGoogle Scholar
  8. 8.
    Carter, N., and Jeffrey, S., 1985, Biochem. Soc. Trans. 13: 531–533.PubMedGoogle Scholar
  9. 9.
    Chow, G., and Benson, S. C., 1979, Exp. Cell Res. 124: 451–453.PubMedCrossRefGoogle Scholar
  10. 10.
    Conway, H. H., Waite, L. C., and Kenny, A. D., 1973, Calcif. ?issue Res. 11: 323–330.CrossRefGoogle Scholar
  11. 11.
    Cuervo, L. A., Pita, J. C., and Howell, D. S., 1971, Calcif. Tissue Res. 7: 220–231.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellison, A. C., 1965, Proc. Soc. Expt. Biol. 120: 415.Google Scholar
  13. Fallon, M. D., 1984, in: Endocrine Control of Bone and Calcium Metabolism (D. V. Cohn et al.,eds.), Elsevier Science Publishers B. V, Amsterdam, pp. 144–146.Google Scholar
  14. 14.
    Gay, C. V, and Mueller, W. J., 1973, J. Histochem. Cytochem. 21: 693.PubMedCrossRefGoogle Scholar
  15. 15.
    Gay, C. V, Faleski, E. J., Schraer, H., and Schraer, R., 1974, J. Histochem. Cytochem. 22: 415.CrossRefGoogle Scholar
  16. 16.
    Gay, C. V, Anderson, R. E., Schraer, H., and Howell, D. S., 1982, J. Histochem. Cytochem. 30: 391–394.PubMedCrossRefGoogle Scholar
  17. 17.
    Gay, C. V, Ito, M. B., and Schraer, H., 1983, Metab. Bone Dis. Rel. Res. 5: 33–39.CrossRefGoogle Scholar
  18. 18.
    Glowacki, J., and Lian, J. B., 1987, Cell Diff. 21: 247–254.CrossRefGoogle Scholar
  19. 19.
    Golub, E. E., Schattschneider, S. C., Berthold, P., Burke, A., and Shapiro, I. M., 1983, J. Biol. Chem. 258: 612–621.Google Scholar
  20. 20.
    Goreau, T. F., 1959, Biol. Bull. 116: 59.CrossRefGoogle Scholar
  21. 21.
    Gunasekaran, S., Hall, G. E., and Kenny, A. D.,1986, Proc. Soc. Exp. Biol. Med. 181: 438–442.Google Scholar
  22. 22.
    Hall, G. E., and Kenny, A. D., 1986, J. Pharmacol. Exp. Ther. 238: 778–782.PubMedGoogle Scholar
  23. 23.
    Hall, G. E., and Kenny, A. D., 1985, Pharmacology 30: 339–347.PubMedCrossRefGoogle Scholar
  24. 24.
    Hall, G. E., and Kenny, A. D., 1985, Calcif. Tissue Int. 37: 134–142.PubMedCrossRefGoogle Scholar
  25. 25.
    Howell, D. S., Pita, J. C., Marquez, J. E, and Madruga, J. E., 1968, J. Clin. Invest. 47: 1121–1132.PubMedCrossRefGoogle Scholar
  26. 26.
    Howell, D. S., Pita, J. C., Marquez, J. F., and Gatter, R. A., 1969, J. Clin. Invest. 48: 630–641.PubMedCrossRefGoogle Scholar
  27. 27.
    Hunter, S. J., Schraer, H., and Gay, C. V, 1988, J. Bone Min. Res. 3: 297–303.CrossRefGoogle Scholar
  28. 28.
    Johnston, P. M., and Comar, C. L., 1955, Am. J. Physiol. 183: 365–370.Google Scholar
  29. 29.
    Kenny, A. D., 1985, Pharmacology 31: 97–107.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumpulainen, T., and Väänänen, H. K., 1982, Calcif. Tissue Res. 34: 428–430.CrossRefGoogle Scholar
  31. 31.
    Mahgoub, A., and Stern, P H., 1974, Am. J. Physiol. 226: 1272–1275.Google Scholar
  32. 32.
    Minken, C., and Jennings, J. M., 1972, Science 176: 1031–1033.CrossRefGoogle Scholar
  33. 33.
    Mitsunaga, K., Akasaka, K., Shimada, H., Fujino, Y., Yasumasu, I., and Numanoi, H., 1986, Cell Di/f 18: 257–262.Google Scholar
  34. 34.
    Pearson, T. W, and Goldner, A. M., 1974, Am. J. Physiol. 227: 465–468.Google Scholar
  35. 35.
    Pearson, T. W, Pryor, T. J., and Goldner, A. M., 1977, Am. J. Physiol. 232: E437–443.Google Scholar
  36. 36.
    Romanoff, A., 1967, Biochemistry of the Avian Embryo: A Quantitative Analysis of Prenatal Development, Wiley-Interscience, New York.Google Scholar
  37. 37.
    Silverton, S. F., Dodgson, S. J., Fallon, M. D., and Forster, R. E., II, 1987, Am. J. Physiol. 253: E670–674.Google Scholar
  38. 38.
    Sly, W. S., Hewett-Emmett, D., Whyte, M. P, Yh, Y. S., and Tashian, R. E., 1983, Proc. Natl. Acad. Sci. USA 80: 2751–2756.CrossRefGoogle Scholar
  39. 39.
    Sly, W. S., Whyte, M. P., Sundaram, V, Tashian, R. E., Hewett-Emmett, D., Guibaud, P, Vainsel, M., Baluarte, H. J., Gruskin, A., Al-Mosawi, M., Sakati, N., and Ohlsson, A., 1985, N. Engl. J. Med. 313: 139–145.PubMedCrossRefGoogle Scholar
  40. 40.
    Tashian, R. E., Hewett-Emmett, D., Dodgson, S. J., Forster, R. E., and Sly, W. S., 1984, Ann. N.Y. Acad. Sci. 429: 262–275.PubMedCrossRefGoogle Scholar
  41. 41.
    Terepka, A. R., Stewart, M. E., and Merkel, N., 1969, Exp. Cell Res. 58: 107–117.PubMedCrossRefGoogle Scholar
  42. 42.
    Terepka, A. R., Coleman, J. R., Garrison, J., and Spataro, R., 1971, in: Cellular Mechanisms for Calcium Transfer and Homeostasis (G. Nichols and R. H. Wasserman, eds.) Academic Press, New York, pp. 371–389.Google Scholar
  43. 43.
    Than, R. S., 1980, Dey. Biol. 74: 196–204.CrossRefGoogle Scholar
  44. 44.
    Than, R. S., and Zrike, J., 1978, Biochem. J. 176: 67–74.Google Scholar
  45. 45.
    Väänänen, H. K., 1984, Histochemistry 81: 485–487.PubMedCrossRefGoogle Scholar
  46. 46.
    Väänänen, H. K., and Parvinen, E. K., 1983, Histochemistry 78: 481–485.PubMedCrossRefGoogle Scholar
  47. 47.
    Väänänen, H. K., and Parvinen, E. K., this volume, Chapter 32.Google Scholar
  48. 48.
    Waite, L. C., 1972, Endocrinology 91: 1160–1165.PubMedCrossRefGoogle Scholar
  49. 49.
    Wilbur, K. M., and Jodrey, L. H., 1955, Biol. Bull. 108: 359.CrossRefGoogle Scholar
  50. 50.
    Wistrand, P. J., 1984, Ann. N.Y. Acad. Sci. 429: 195–206.PubMedCrossRefGoogle Scholar
  51. 51.
    Wistrand, P. J., and Knuuttila, K.-G., 1980, Acta Physiol. Scand. 109: 239–248.PubMedCrossRefGoogle Scholar
  52. 52.
    Wuthier, R. E., 1969, Calcif. Tissue Res. 4: 20–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Wuthier, R. E., 1971, Calcif. Tissue Res. 8: 24–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Wuthier, R. E., 1977, Calcif. Tissue Res. 23: 125–133.PubMedCrossRefGoogle Scholar
  55. 55.
    Yasumasu, I., Mitsunaga, K., and Fujino, Y., 1985, Exp. Cell. Res. 159: 80–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Susan F. Silverton
    • 1
  1. 1.Department of Oral MedicineUniversity of Pennsylvania School of Dental MedicinePhiladelphiaUSA

Personalised recommendations