Carbonic Anhydrase and Chemoreception in Carotid and Aortic Bodies

  • Sukhamay Lahiri


Intracellular pH in eukaryotic cells is maintained more acid than extracellular pH (6.8 vs. 7.4), but it is more alkaline than predicted by electrochemical gradient at equilibrium (reviewed in reference 14). The intracellular pH is therefore maintained by some active process. What critical role the carbonic anhydrases (CAs) play in the maintenance of steady-state cellular cytosolic pH in the glomus cells of carotid and aortic bodies is unclear. It is clear, however, that in dynamic physiological states, where speed of reaction matters, CAs are important.


Carotid Body Glomus Cell Peripheral Chemoreceptor Central Chemoreceptor Arterial Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, A. M. S., and Torrance, R. W, 1971, Respir. Physiol. 13: 221–237.PubMedCrossRefGoogle Scholar
  2. 2.
    Erhan, B., Mulligan, E., and Lahiri, S., 1981, Neuroscience Leu. 24: 143–147.CrossRefGoogle Scholar
  3. 3.
    Fitzgerald, R. S., and Lahiri, S., 1986, in: Handbook of Physiology; The Respiratory System, Volume II (A. P. Fishman, ed.), American Physiological Society, Bethesda, Md., pp. 313–362.Google Scholar
  4. 4.
    Gros, G., and Dodgson, S. J., 1988, Annu. Rev. Physiol. 50: 669–694.PubMedCrossRefGoogle Scholar
  5. 5.
    Hays, M. W, Maini, B. K., and Torrance, R. W, 1976, in: Morphology and Mechanisms of Chemoreceptors (A. S. Paintal, ed.), University of Delhi, Delhi, India, pp. 36–45.Google Scholar
  6. 6.
    Lahiri, S., and DeLaney, R. G., 1975, Respir. Physiol. 24: 249–266.PubMedCrossRefGoogle Scholar
  7. 7.
    Lahiri, S., DeLaney, R. G., and Fishman, A. P., 1976, Physiologist 19: 261.Google Scholar
  8. 8.
    Lahiri, S., Mokashi, A., DeLaney, R. G., and Fishman, A. P., 1978, Respir. Physiol. 34: 359–375.PubMedCrossRefGoogle Scholar
  9. 9.
    Lahiri, S., Mulligan, E., Nishino, T., and Mokashi, A., 1979, J. Appl. Physiol. 47: 858–866.PubMedGoogle Scholar
  10. 10.
    Lahiri, S., Mulligan, E., and Mokashi, A., 1982, Brain Res. 234: 137–147.PubMedCrossRefGoogle Scholar
  11. 11.
    Lahiri, S., Mulligan, E., Andronikou, S., Shirahata, M., and Mokashi, A., 1987, J. Appl. Physiol. 62: 1924–1931.PubMedGoogle Scholar
  12. 12.
    Lee, K. D., and Mattenheimer, H., 1964, Enzymol. Biol. Clin. 4: 199–216.Google Scholar
  13. 13.
    Lopez-Barneo, J., Lopez-Lopez, J. R., Urena T., and Gonzalez, C., 1988, Science 241: 580–582.PubMedCrossRefGoogle Scholar
  14. 14.
    Madshus, H., 1988, Biochem. J. 250: 1–8.PubMedGoogle Scholar
  15. 15.
    McCloskey, D. I., 1968, in: Arterial Chemoreceptors (R. W. Torrance, ed.), Blackwell, Oxford, pp. 279–295.Google Scholar
  16. 16.
    Mulligan, E., S. Lahiri, and B. Storey, 1981, J. Appl. Physiol. 51: 438–446.PubMedGoogle Scholar
  17. 17.
    Ridderstrâle, Y., and Hanson, M. A., 1984, Ann. N.Y. Acad. Sci. 429: 398–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Roughton, F. J. W, 1954, in: Respiratory Physiology in Aviation (W. M. Roothbey, ed.), Air University, Randolph Field, Texas, pp. 51–102.Google Scholar
  19. Scheid, P., and Siffert, W, 1985, J. Physiol. (London) 361:91–101.Google Scholar
  20. 20.
    Tashian, R. E., 1989, BioEssays 10: 186–192.PubMedCrossRefGoogle Scholar
  21. 21.
    Torrance, R. W, 1968, in: Arterial Chemoreceptors (R. W. Torrance, ed.), Blackwell, Oxford, pp. 1=40.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Sukhamay Lahiri
    • 1
  1. 1.Department of PhysiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations