X-Ray Crystallographic Studies of Carbonic Anhydrase Isozymes I, II, and III

  • A. Elisabeth Eriksson
  • Anders Liljas


The crystallographic structures of human carbonic anhydrases (CAs) (EC were determined in the early 1970s. For reviews of the early work, see references 1, 18, 19, 34, 48.


Proton Transfer Histidyl Residue Carbonic Anhydrase Isozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergstén, P.-C., Waara, I., Lövgren, S., Liljas, A., Kannan, K. K., and Bengtsson, U., 1971, in: Oxygen Affinity of Hemoglobin and red cell acid-base status (M. Rörth, and P. Astrup, eds.), Munksgaard, Copenhagen, Academic Press, New York, pp. 363–383.Google Scholar
  2. 2.
    Bertini, I., and Luchinat, C., 1983, Acc. Chem. Res. 16: 272–279.CrossRefGoogle Scholar
  3. 3.
    Chakravarty, S., Yadava, V. S., Kumar, V., and Kannan, K. K., 1985, Proc. Int. Symp. Biomol. Struct. Interact. Suppl. J. Biosci. 8: 491–498.Google Scholar
  4. 4.
    Chen, R. F., and Kemohan, J. C., 1967, J. Biol. Chem. 242: 5813–5823.PubMedGoogle Scholar
  5. 5.
    Coleman, J. E., 1967, J. Biol. Chem. 242: 5212–5219.PubMedGoogle Scholar
  6. 6.
    Eigen, M., and Hammes, G. G., 1963, Adv. Enzymol. 25: 1–38.PubMedGoogle Scholar
  7. 7.
    Engberg, P., and Lindskog, S., 1984, FEBS Lett. 170: 326–330.PubMedCrossRefGoogle Scholar
  8. 8.
    Engberg, P, Millqvist, E., Pohl, G., and Lindskog, S., 1985, Arch. Biochem. Biophys. 241: 628–638.PubMedCrossRefGoogle Scholar
  9. 9.
    Eriksson, A. E., 1988, Acta Univ. Ups. Compr. Summ. Upps. Dissert. Fac. Sci. 164: 1–36.Google Scholar
  10. 10.
    Eriksson, A. E., Jones, T. A., and Liljas, A., 1988, Proteins, Structure, Function and Genetics 4: 274–282.CrossRefGoogle Scholar
  11. 11.
    Eriksson, A. E., Kylsten, P M., Jones, T. A., and Liljas, A., 1988, Proteins, Structure, Function and Genetics 4: 283–293.CrossRefGoogle Scholar
  12. 12.
    Ghannam, A. F., Tsen, W, and Rowlett, R. S., 1986, J. Biol. Chem. 261: 1164–1169.PubMedGoogle Scholar
  13. 13.
    Hewett-Emmett, D., Hopkins, P. J., Tashian, R. E., and Czelusniak, J., 1984, Ann. N.Y. Acad. Sci. 429: 338–358.PubMedCrossRefGoogle Scholar
  14. 14.
    Holmes, R. S., 1977, Eur. J. Biochem. 78: 511–520.PubMedCrossRefGoogle Scholar
  15. 15.
    Kanamori, K., and Roberts, J. D., 1983, biochemistry 22: 2658–2664.Google Scholar
  16. 16.
    Kannan, K. K., 1980, in: Biophysics and Physiology of Carbon Dioxide (C. Bauer, G. Gros, and H. Bartels, eds.), Springer-Verlag, Berlin, pp. 184–205.Google Scholar
  17. 17.
    Kannan, K. K., Notstrand, B., Fridborg, K., Lövgren, S., Ohlsson, A., and Petef, M., 1975, Proc. Natl. Acad. Sci. USA 72: 51–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Kannan, K. K., Ramanadham, M., and Jones, T. A., 1984, Ann. N.Y Acad. Sci. 429: 49–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Kannan, K. K., Vaara, I., Notstrand, B., Lövgren, S., Borell, A., Fridborg, K., and Petef, M., 1977, in: Drug Action at the Molecular Level (G. C. K. Roberts, ed. ), The Macmillan Press, pp. 73–93.Google Scholar
  20. 20.
    Kannan, K. K., Petef, M., Fridborg, K., Cid-Dresdner, H., and Lövgren, S., 1977, FEBS Lett. 73: 115–119.PubMedCrossRefGoogle Scholar
  21. 21.
    Khalifah, R. G., 1971, J. Biol. Chem. 246: 2561–2573.PubMedGoogle Scholar
  22. 22.
    Kossiakoff, A. A., and Spencer, S. A., 1981, Biochemistry 20: 6462–6474.PubMedCrossRefGoogle Scholar
  23. 23.
    Koester, M. K., Register, A. M., and Noltmann, E. A., 1977, Biochem. Biophys. Res. Commun. 76: 196–204.PubMedCrossRefGoogle Scholar
  24. 24.
    Koester, M. K., Pullan, L. M., and Noltmann, E. A., 1981, Arch. Biochem. Biophys. 2H: 632–642.CrossRefGoogle Scholar
  25. 25.
    Led, J. J., and Neesgaard, E., 1987, Biochemistry 26: 183–192.PubMedCrossRefGoogle Scholar
  26. 26.
    Liang, J.-Y., and Lipscomb, W. N., 1987, Biochemistry 26: 5293–5301.PubMedCrossRefGoogle Scholar
  27. 27.
    Lijas, A., Kannan, K. K., Bergstén, P.-C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Järup, L., Lövgren, S., and Petef, M., 1972, Nature (London) New Biol. 235: 131–137.Google Scholar
  28. 28.
    Lindskog, S., 1966, Biochemistry 5: 264–2646.CrossRefGoogle Scholar
  29. 29.
    Lindskog, S., and Coleman, J. E., 1973, Proc. Natl. Acad. Sci. USA 70: 2505–2508.PubMedCrossRefGoogle Scholar
  30. 30.
    Lindskog, S., and Wistrand, P. J., 1987, in: Design of Enzyme Inhibitors as Drugs (H. Sandler and H. J. Smith, eds.), Oxford University Press, New York, pp. 698–723.Google Scholar
  31. 31.
    Lindskog, S., Engberg, P., Forsman, C., Ibrahim, S. A., Jonsson, B.-H., Simonsson, I., and Tibell, L., 1984, Ann. N.Y. Acad. Sci. 429: 61–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Magid, E., 1967, Scand. J. Haematal. 4: 257–270.CrossRefGoogle Scholar
  33. 33.
    Maren, T. H., 1987, Drug Devl. Res. 10: 255–276.CrossRefGoogle Scholar
  34. 34.
    Notstrand, B., Vaara, I., and Karman, K. K., 1975, in: Isozymes I. Molecular structure (C. L. Markert, ed.), Academic Press, Inc., New York, pp. 575–599.Google Scholar
  35. 35.
    Pucker, Y., and Deits, T. L., 1983, J. Am. Chem. Soc. 105: 980–986.CrossRefGoogle Scholar
  36. 36.
    Packer, Y., and Sarkanen, S., 1978, Adv. Enzymol. 47: 149–274.Google Scholar
  37. 37.
    Quiocho, F. A., Sack, J. S., and Vyas, N. K., 1987, Nature 329: 561–564.PubMedCrossRefGoogle Scholar
  38. 38.
    Rowlett, R. S., and Silverman, D. N., 1982, J. Am. Chem. Soc. 104: 6737–6741.CrossRefGoogle Scholar
  39. 39.
    Sanyal, G., 1984, Arch. Biochem. Biophys. 234: 576–579.PubMedCrossRefGoogle Scholar
  40. 40.
    Sanyal, G., Swenson, E. R., Pessah, N. I., and Maren, T. H., 1982, Mol. Pharmacol. 22: 211–220.PubMedGoogle Scholar
  41. 41.
    Silverman, D. N., and Lindskog, S., 1988, Acc. Chem. Res. 21: 30–36.CrossRefGoogle Scholar
  42. 42.
    Steiner, H., Jonsson, B.-H., and Lindskog, S., 1975, Eur. J. Biochem. 59: 253–259.PubMedCrossRefGoogle Scholar
  43. 43.
    Tashian, R. E., 1977, Curr. Top. Biol. Med. Res. 2: 21–62.Google Scholar
  44. 44.
    Tashian, R. E., Hewett-Emmett, D., Stroup, S. K., Goodman, M., Yu, Y.-S. L., 1980, in: Biophysics and Physiology of Carbon Dioxide (C. Bauer, G. Gros, and H. Bartels, eds.), Springer-Verlag, Berlin, pp. 165–176.Google Scholar
  45. 45.
    C. K., Sanyal, G., Wynns, G. C., and Silverman, D. N., 1983, J. Biol. Chem. 258: 8867–8871.PubMedGoogle Scholar
  46. 46.
    L, C., Wynns, G. C., and Silverman, D. N., 1981, J. Biol. Chem. 256: 9466–9470.PubMedGoogle Scholar
  47. 47.
    Vidgren, J., Liljas, A., and Walker, N. P. C., 1990, Int. J. Biol. Macromol.,in press.Google Scholar
  48. 48.
    Waara, I., Lövgren, S., Liljas, A., Kannan, K. K., and Bergstén, P. C., 1972, in: Hemoglobin and Red Cell Structure and Function (G. J. Brewer, ed.), Plenum Press, New York, pp. 169–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. Elisabeth Eriksson
    • 1
  • Anders Liljas
    • 2
  1. 1.Institute of Molecular BiologyUniversity of OregonEugeneUSA
  2. 2.Department of Molecular Biophysics, Chemical CenterUniversity of LundSweden

Personalised recommendations