Carbonic Anhydrase in Myelin and Glial Cells in the Mammalian Central Nervous System

  • Wendy Cammer


During the past 10 years, immunocytochemical methods have been used for localization of carbonic anhydrase (CA) in glial cells and myelin in the mammalian central nervous system. Those immunocytochemical studies were, however, preceded by several decades of biochemical research, and the possible localization in the oligodendrocytes, which comprise one glial cell type, was first suggested over 45 years ago, after CA was assayed in homogenates of spinal cords and cerebra from seven species.1 At that time, large numbers of oligodendrocytes had been observed predominantly in myelinated regions, where they were often found in rows between myelinated axons. Later, the oligodendrocytes were shown to be the cells that myelinate axons in the central nervous system (reviewed in reference 50). The astrocytes, which are the other major glial cells of brain and spinal cord, are quite diverse in their structures and putative functions, which include the transport of ions, water, and other compounds and the formation of scar tissue within the brain after injury.23,33,40 In this chapter, the evidence for CA in myelin and in glial cells of both types will be discussed. Possible functions for the CA in myelin and glial cells will also be suggested. In another chapter, there is some discussion of localization in the peripheral nervous system and exceptions to the localization in glial cells in the mammalian central nervous system.36 The high levels of CA in the choroid plexus14 should also be noted.


White Matter Glial Cell Gray Matter Glial Fibrillary Acidic Protein Carbonic Anhydrase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashby, W., 1944, J. Biol. Chem. 152: 235–240.Google Scholar
  2. 2.
    Ashby, W, and Schuster, E. M., 1950, J. Biol. Chem. 184: 109–116.PubMedGoogle Scholar
  3. 3.
    Benjelloun, S., Delaunoy, J. P., Gomes, D., DeVitry, F., Langui, D., and Dupouey, P., 1986, Dey. Neurosci. 8: 150–159.CrossRefGoogle Scholar
  4. 4.
    Cammer, W, 1984, Ann. N.Y. Acad. Sci. 429: 494–497.PubMedCrossRefGoogle Scholar
  5. 5.
    Cammer, W, 1990, J. Neuroimmcnol. 26: 173–178.CrossRefGoogle Scholar
  6. 6.
    Cammer, W, Bieler, L., Fredman, T, and Norton, W. T., 1977, Brain Res. 138: 17–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Cammer, W, Fredman, T, Rose, A. L., and Norton, W. T, 1976, J. Neurochem. 27: 165–171.PubMedCrossRefGoogle Scholar
  8. 8.
    Cammer, W, Sacchi, R., and Sapirstein, V., 1985, J. Histochem. Cytochem. 33: 45–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Cammer, W., and Tansey, F. A., 1988, J. Neurochem. 50: 319–322.PubMedCrossRefGoogle Scholar
  10. 10.
    Cammer, W., and Tansey, F. A., 1988, J. Comp. Neurol. 275: 65–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Cammer, W., Tansey, F. A., and Brosnan, C. F., 1989, Glia 2: 223–230.PubMedCrossRefGoogle Scholar
  12. 12.
    DiVitry, F., Gomes, D., Rataboul, P., Dumas, S., Hillion, J., Catelon, J., Delaunoy, J. P., TixierVidal, A., and Dupouey, P, 1989, J. Neurosci. Res. 22: 120–129.CrossRefGoogle Scholar
  13. 13.
    Farooq, M., and Norton, W. T, 1978, J. Neurochem. 31: 887–894.PubMedCrossRefGoogle Scholar
  14. 14.
    Fisher, R. G., and Copenhaver, J. H., 1959, J. Neurosurg. 16: 167–176.PubMedCrossRefGoogle Scholar
  15. 15.
    Ghandour, M. S., Langley, O. K., Vincendon, G., and Gombos, G., 1979, J. Histochem. Cytochem. 27: 1634–1637.PubMedCrossRefGoogle Scholar
  16. 16.
    Ghandour, M. S., Langley, O. K., Vmcendon, G., and Gombos, G., 1980, Neuroscience 5: 559–571.PubMedCrossRefGoogle Scholar
  17. 17.
    Ghandour, M. S., Skoff, R. P., Venta, P. J., and Tashian, R. E., 1989, J. Neurosci. Res. 23: 180–190.PubMedCrossRefGoogle Scholar
  18. 18.
    Giacobini, E., 1961, Science 134: 1524–1525.PubMedCrossRefGoogle Scholar
  19. 19.
    Giacobini, E., 1982, J. Neurochem. 9: 169–177.CrossRefGoogle Scholar
  20. 20.
    Griot, C., and Vandervelde, M., 1988, J. Neuroimmunol. 18: 333–340.PubMedCrossRefGoogle Scholar
  21. 21.
    Gros, G., and Dodgson, S. J., 1988, Annu. Rev. Physiol. 50: 669–694.PubMedCrossRefGoogle Scholar
  22. 22.
    Kahn, S., Tansey, F. A., and Cammer, W, 1986, J. Neurochem. 47: 1061–1065.PubMedCrossRefGoogle Scholar
  23. 23.
    Kimelberg, H. K., and Ransom, B. R., 1986, in: Astrocytes-Cell Biology and Pathology of Astrocytes, Volume 3 (S. Fedoroff and A. Vemadakis, eds.), Academic Press, New York, pp. 129–166.Google Scholar
  24. 24.
    Kimelberg, H. K., Braddlecome, S., Narumi, S., and Bourke, R. S., 1978, Brain Res. 141: 305–323.PubMedCrossRefGoogle Scholar
  25. 25.
    Kimelberg, H. K., Stieg, P. E., and Mazurkiewicz, J. E., 1982, J. Neurochem. 39: 734–742.PubMedCrossRefGoogle Scholar
  26. 26.
    Korhonen, L. K., Naatanen, E., and Hyyppa, M., 1964, Acta Histochem. 18: 336–347.PubMedGoogle Scholar
  27. 27.
    Koul, O., and Kanungo, M. S., 1975, Exp. Gerontol. 10: 273–278.PubMedCrossRefGoogle Scholar
  28. 28.
    Kumpulainen, T., and Korhonen, L. K., 1982, J. Histochem. Cytochem. 30: 283–292.PubMedCrossRefGoogle Scholar
  29. 29.
    Langley, O. K., Ghandour, M. S., Vincendon, G., and Gombos, G., 1980, Histochem. J. 12: 473–483.PubMedCrossRefGoogle Scholar
  30. 30.
    LeVine, S. M., and Goldman, J. E., 1988, J. Neurosci. 8: 3992–4006.PubMedGoogle Scholar
  31. 31.
    LeVine, S. M., and Goldman, J. E., 1988, J. Comp. Neurol. 277: 441–455.PubMedCrossRefGoogle Scholar
  32. 32.
    Levine, S. M., and Macklin, W. B., 1988, Brain Res. 444: 199–203.PubMedCrossRefGoogle Scholar
  33. 33.
    Lindsay, R. M., 1986, in: Astrocytes-Cell Biology and Pathology of Astrocytes, Volume 3 (S. Fedoroff and A. Vemadakis, eds.), Academic Press, New York, pp. 231–262.Google Scholar
  34. 34.
    Linser, P. J., 1985, J. Neurosci. 5: 2388–2396.PubMedGoogle Scholar
  35. 35.
    Nagata, Y., Mikoshiba, K., and Tsukada, Y., 1974, J. Neurochem. 22: 493–503.PubMedCrossRefGoogle Scholar
  36. 36.
    Neubauer, J., this volume, Chapter 27.Google Scholar
  37. 37.
    Norton, W. T, and Poduslo, S. E., 1973, J. Neurochem. 21: 749–757.PubMedCrossRefGoogle Scholar
  38. 38.
    Pettman, B., Delaunoy, J. P, Couraget, J., Devilliers, G., and Sensenbrenner, M., 1980, Dey. Biol. 75: 278–287.CrossRefGoogle Scholar
  39. 39.
    Pfeiffer, S. E., 1984, in: Oligodendroglia (W. T. Norton, ed.), Plenum Press, New York, pp. 233–298.Google Scholar
  40. 40.
    Privat, A., and Rataboul, P., 1986, in: Astrocytes-Development, Morphology, and Regional Specialization of Astrocytes, Volume 1 (S. Fedoroff and A. Vernadakis, eds.), Academic Press, New York, pp. 105–129.Google Scholar
  41. 41.
    Roussel, G., Delaunoy, J. P, Nussbaum, J. L., and Mandel, P., 1979, Brain Res. 160: 47–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Sapirstein, V., 1983, in: Handbook of Neurochemistry, Volume 4 (A. Lajtha, ed.), Plenum Press, New York, pp. 385–402.Google Scholar
  43. 43.
    Sapirstein, V. S., and Lees, M. B., 1978, J. Neurochem. 31: 505–511.PubMedCrossRefGoogle Scholar
  44. 44.
    Schousboe, A., Nissen, C., Bock, E., Sapirstein, V. S., Juurlink, B. H. J., and Hertz, L.,1980, in: Tissue Culture in Neurobiology (E. Giacobini, A. Vernadakis, and A. Shahar, eds.), Raven Press, New York, pp. 397–409.Google Scholar
  45. 45.
    Sinha, A. K., and Rose, S. P. R., 1971, Brain Res. 33: 205–217.PubMedCrossRefGoogle Scholar
  46. 46.
    Snyder, D. S., Zimmerman, T. R., Jr., Farooq, M., Norton, W. T, and Cammer, W, 1983, J. Neurochem. 40: 120–127.PubMedCrossRefGoogle Scholar
  47. 47.
    Snyder, D. S., Raine, C. S., Farooq, M., and Norton, W. T, 1980, J. Neurochem. 34: 1614–1621.PubMedCrossRefGoogle Scholar
  48. 48.
    Tansey, F. A., and Cammer, W, 1988, Dey. Brain Res. 43: 123–130.CrossRefGoogle Scholar
  49. 49.
    Tansey, F. A., Thampy, K. G., and Cammer, W, 1988, Dev. Brain Res. 43: 131–138.CrossRefGoogle Scholar
  50. 50.
    Wood, P., and Bunge, R. P, 1984, in: Oligodendroglia (W. T. Norton, ed.), Plenum Press, New York, pp. 1–46.Google Scholar
  51. 51.
    Yandrasitz, J. R., Ernst, S. A., and Salganicoff, L., 1976, J. Neurochem. 27: 707–715.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Wendy Cammer
    • 1
  1. 1.Department of NeurologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations