Advertisement

Liver Mitochondrial Carbonic Anhydrase (CA V), Gluconeogenesis, and Ureagenesis in the Hepatocyte

  • Susanna J. Dodgson

Abstract

In the 1970s, there was great interest in the functioning of isolated mitochondria, which led in 1978 to the awarding of the Nobel Prize for Physiology and Medicine to Dr. Peter Mitchell for his chemiosmotic theory. A few weeks later, the reviewer arrived in Philadelphia as the postdoctoral fellow of Dr. Robert E. Forster II. Dr. Forster has had a successful career devoted to studying anomalies in the theories of gas diffusion, pH disequilibrium, and carbonic anhydrase (CA)18,22; he believed that there was something wrong in Dr. Mitchell’s theory and that a mitochondrial CA would dissipate the proton gradient required. A collaboration was started with two experts in mitochondrial bioenergetics: Dr. Leena Mela, who knew how to isolate mitochondria from several organs, and Dr. Bayard Storey, who knew how to isolate skeletal muscle mitochondria.42 By 18O mass spectrometric CA analysis,18,30 the reviewer found abundant CA activity in guinea pig liver and skeletal muscle but none in brain, kidney, or heart.15 The work on skeletal muscle that has been done since then is reviewed elsewhere,42 as is the work with the CA V containing rat kidney mitochondria.6 Exhaustive literature searches indicated that liver fractionation by previous workers had given some evidence of CA activity in mitochondria, but several believed that this was the result of contamination from the cytosol of hepatocytes or erythrocytes (reviewed in reference 21). Work in which sulfonamide inhibition reduced HCO3−-linked Ca2+ transport across the mitochondrial membrane did, however, convince the investigators of the existence of a mitochondrial CA.17,24 With one notable exception,45 there has been until recently little interest outside of this laboratory in studying this lovely isozyme directly but considerable interest in studying the effects of rendering it nonfunctional by sulfonamide CA inhibition. Mitochondrial CA inhibition has been concluded to be responsible for decreased urea and glucose synthesis by alligators and chameleons in vivo,5 decreased urea synthesis by isolated perfused rat livers,25,34 decreased urea and glucose synthesis by isolated rat hepatocytes,3,35,39 and by isolated guinea pig hepatocytes,7,10,11,14 and decreased citrulline synthesis by intact isolated liver mitochondria from guinea pigs7,12 and rats46 (S. J. Dodgson and A. J. Meijer, unpublished results). Reviews of ongoing work in the field have appeared in the past decade.14,21,22

Keywords

Carbonic Anhydrase Carbonic Anhydrase Activity Urea Synthesis Carbamyl Phosphate Glucose Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arinze, M. A., Garber, A. J., and Hanson, R. W, 1973, J. Biol. Chem. 248: 2266–2274.PubMedGoogle Scholar
  2. 2.
    Balboni, E., and Lehninger, A. L., 1986, J. Bio!. Chem. 261: 3563–3570.Google Scholar
  3. 3.
    Boon, L., and Meijer, A. J., 1988, Eur. J. Biochem. 171: 465–469.CrossRefGoogle Scholar
  4. Carter, N. D., Dodgson, S. J., and Quant, P, 1991, Biochim. Biophys. Acta,in press.Google Scholar
  5. 4.
    Cheung, C. W, Cohen, N. S., and Raijman, L., 1989, J. Biol. Chem. 264: 4038–4044.PubMedGoogle Scholar
  6. 5.
    Coulson, R. A., and Herbert, J. D., 1984, Ann. N.Y. Acad. Sci. 429: 505–515.PubMedCrossRefGoogle Scholar
  7. 6.
    Dodgson, S. J., this volume, Chapter 1.Google Scholar
  8. 7.
    Dodgson, S. J., 1987, J. App!. Physiol. 63: 2134–2141.Google Scholar
  9. 8.
    Dodgson, S. J., and Contino, L. C., 1988, Arch. Biochem. Biophys. 260: 334–341.PubMedCrossRefGoogle Scholar
  10. 9.
    Dodgson, S. J., and Forster, R. E., II, 1983, J. App!. Physiol. 55: 1292–1298.Google Scholar
  11. 10.
    Dodgson, S. J., and Forster, R. E., II, 1986, J. Appl. Physiol. 60: 646–652.PubMedGoogle Scholar
  12. 11.
    Dodgson, S. J., and Forster, R. E., II, 1986, Arch. Biochem. Biophys. 251: 198–204.PubMedCrossRefGoogle Scholar
  13. 12.
    Dodgson, S. J., Forster, R. E., II, Schwed, D. A., and Storey, B. T, 1983, J. Biol. Chem. 258: 7696–7701.PubMedGoogle Scholar
  14. 13.
    Dodgson, S. J., Forster, R. E., II, and Storey, B. T., 1982, J. Biol. Chem. 257: 1705–1711.PubMedGoogle Scholar
  15. 14.
    Dodgson, S. J., Forster, R. E., II, and Storey, B. T, 1984, Ann. N.Y. Acad. Sci. 429: 516–524.PubMedCrossRefGoogle Scholar
  16. 15.
    Dodgson, S. J., Forster, R. E., II, Storey, B. T., and Mela, L., 1980, Proc. Natl. Acad. Sci. USA 77: 5562–5566.PubMedCrossRefGoogle Scholar
  17. 16.
    Dodgson, S. J., and Watford, M., 1990, Arch. Biochem. Biophys.Google Scholar
  18. 17.
    Elder, J. A., and Leninger, A. L., 1986, J. Biol. Chem. 261: 3563–3570.Google Scholar
  19. 18.
    Forster, R. E., II, this volume, Chapter 6.Google Scholar
  20. 19.
    Gebhardt, R., and Mecke, D., 1983, EMBO J, 2: 567–570.PubMedGoogle Scholar
  21. 20.
    Geers, C., and G. Gros, this volume, Chapter 19.Google Scholar
  22. 21.
    Gros, G., and Dodgson, S. J., 1988, Annu. Rev. Physiol. 50: 669–694.PubMedCrossRefGoogle Scholar
  23. 22.
    Gros, G., Forster, R. E., II, and Dodgson, S. J., 1988, in: pH Homeostasis. Mechanisms and Control (D. Häussinger, ed.) Academic Press, New York, pp. 203–231.Google Scholar
  24. 23.
    Hallermayer, G., Zimmerman, R., and Neupert, W, 1977, Eur. J. Biochem. 81: 523–532.PubMedCrossRefGoogle Scholar
  25. 24.
    Harris, E. J., 1978, Biochem. J. 176: 983–991.PubMedGoogle Scholar
  26. 25.
    Häussinger, D., and Gerok, W, 1985, Eur. J. Biochem. 152: 381–386.PubMedCrossRefGoogle Scholar
  27. 26.
    Häussinger, D., Kaiser, S., Stehle, T., and Gerok, W, 1986, Biochem. Pharmacol. 35:3317–3322.PubMedCrossRefGoogle Scholar
  28. 27.
    Herbert, J. D., Coulson, R. A., and Hernandez, T., 1975, Biochem. Biophys. Res. Commun. 65: 1054–1060.PubMedCrossRefGoogle Scholar
  29. 28.
    Hewett-Emmett, D., and Tashian, R. E., this volume, Chapter 2.Google Scholar
  30. 29.
    Hewett-Emmett, D., Cook, R. G., and Dodgson, S. J., 1986, Isozyme Bull. 19: 13.Google Scholar
  31. 30.
    Itada, N., and Forster, R. E., II, 1977, J. Biol. Chem. 252: 3881–3890.PubMedGoogle Scholar
  32. 31.
    Jeffery, S., this volume, Chapter 24.Google Scholar
  33. 32.
    Lindros, K. O., and Penttilä, K. E., 1985, Biochem. J. 228: 757–760.PubMedGoogle Scholar
  34. 33.
    Lipsen, B., and R. M. Effros, 1988, J. Appl. Physiol. 65: 2736–2743.PubMedGoogle Scholar
  35. 34.
    Marsolais, C., Huot, S., David, F., Garneau, M., and Brunengraber, H., 1987, J. Biol. Chem. 262: 2604–2607.PubMedGoogle Scholar
  36. 35.
    Metcalfe, H. K., Monson, J. P., Drew, P. J., Iles, R. A., Carter, N. D., and Cohen, R. D., 1985, Biochem. Soc. Tian. 13: 255.Google Scholar
  37. 36.
    Neupert, W, and Schatz, G., 1981, Trends Biochem. Sci. 6: 1–4.CrossRefGoogle Scholar
  38. 37.
    Quistorff, B., Grunnet, N., and Cornell, N. W, 1985, Biochem. J. 226: 289–291.PubMedGoogle Scholar
  39. 38.
    Quistorff, B., and Grunnet, N., 1987, Biochem. J. 243: 87–95.PubMedGoogle Scholar
  40. 39.
    Rognstad, R., 1983, Arch. Biochem. Biophys. 222: 442–448.PubMedCrossRefGoogle Scholar
  41. 40.
    Slater, E., 1987, Ear. J. Biochem. 166: 489–504.CrossRefGoogle Scholar
  42. 41.
    Srivastava, D. K., and Bernhard, S. A., 1986, Cur. Top. Cell. Regul. 28: 1–68.Google Scholar
  43. 42.
    Storey, B. T., this volume, Chapter 22.Google Scholar
  44. 43.
    Stuart, R. A., D. W. Nicholson, M. A. Harney, and W. Neupert, 1988, Biochem. Soc. Trans. 16: 701–702.PubMedGoogle Scholar
  45. 44.
    Tashian, R. E., 1989, Biosci. Rep. 10: 186–192.Google Scholar
  46. 45.
    Vincent, S. H., and Silverman, D. N., 1982, J. Biol. Chem. 275: 6850–6855.Google Scholar
  47. 46.
    Wanders, R. J. A., van Roermund, C. W. T., and Meijer, A. J., 1984, Eur. J. Biochem. 142: 247–254.PubMedCrossRefGoogle Scholar
  48. 47.
    Watford, M., 1989, Trends Biol. Sci. 14: 313–314.CrossRefGoogle Scholar
  49. 48.
    Wistrand, P J., and Knuuttila, K.-G., 1989, Kidney Int. 35: 851–859.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Susanna J. Dodgson
    • 1
  1. 1.Department of PhysiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations