Expression of Carbonic Anhydrases I and II in Mouse Erythropoiesis

  • William Thierfelder
  • Patrick Cummings
  • Peter Fraser
  • Peter J. Curtis

Abstract

Carbonic anhydrase (CA) is the second most abundant protein in red blood cells, where it exists in two isozymic forms, CA I and CA II. CA I is found in a limited number of tissues besides red blood cells, including intestinal epithelium, vascular endothelium, corneal epithelium, and lens of the eye. CA II, though most abundant in red blood cells, is found in a wide variety of cells and tissues. The ratio of these two isozymes in red blood cells varies from species to species; the ratios of CA I to CA II are 6:1 in humans, 27:1 in orangutans, 2.6:1 in macaques, and 1:2 in mice. However, CA II is considerably more active than CA I; thus, the physiological significance of CA I is uncertain, since there exists CA I deficiency in red blood cells of macaques and humans with no observable effect.

Keywords

Carbonic Anhydrase Erythroid Differentiation Hypersensitive Site Uninduced Cell Carbonic Anhydrase Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brady, H. J. M., Lowe, N., Sowden, J. C., Barlow, J. H., and Butterworth, P. W, 1989, Biochem. Soc. Trans. 17: 184–185.Google Scholar
  2. 2.
    Curtis, P. J., 1983, J. Biol. Chem. 258: 4459–4463.PubMedGoogle Scholar
  3. 3.
    Curtis, P. J., Withers, E., Demuth, D., Watt, R., Venta, P. J., and Tashian, R. E., 1983, Gene 25: 325–332.PubMedCrossRefGoogle Scholar
  4. 4.
    Fraser, P. J., and Curtis, P. J., 1986, J. Mol. Evol. 23: 294–299.PubMedCrossRefGoogle Scholar
  5. 5.
    Fraser, P. J., and Curtis, P J., 1987, Genes Dev. 1: 855–886.PubMedCrossRefGoogle Scholar
  6. 6.
    Fraser, P., Cummings, P, and Curtis, P., 1989, Mol. Cell. Biol. 9: 3308–3313.PubMedGoogle Scholar
  7. 7.
    Friend, C., 1957, J. Exp. Med. 105: 307–318.PubMedCrossRefGoogle Scholar
  8. 8.
    Friend, C., Scher, W, Holland, J. G., and Sato, T., 1971, Proc. Nat 1. Acad. Sci. USA 68: 378–382.Google Scholar
  9. 9.
    Kabat, D., Sherton, C. C., Evans, L. H., Bigley, R., and Koler, R. D., 1975, Cell 5: 331–338.PubMedCrossRefGoogle Scholar
  10. 10.
    Marks, P. A., and Ritkind, R. A., 1978, Annu. Rev. Biochem. 47: 419–448.PubMedCrossRefGoogle Scholar
  11. 11.
    Stern, R. H., Boyer, S. H., Conscience, J. I., Friend, G., Margalet, I., Tashian, R. F., and Ruddle, F. H., 1977, Proc. Soc. Exp. Biol. Med. 156: 52–55.PubMedGoogle Scholar
  12. 12.
    Venta, P. J., Montgomery, J. C., Hewett-Emmett, D., Wiebauer, K., and Tashian, R. E., 1985, J. Biol. Chem. 260: 12130–12135.PubMedGoogle Scholar
  13. 13.
    Villeval, J. L., Testa, U., Vinci, G., Tonthat, H., Bettelab, A., Titeux, M., Cramer, P., Edelman, L., Rochant, M., Breton Gorius, J., and Veinchenker, W, 1985, Blood 66: 1162–1170.PubMedGoogle Scholar
  14. 14.
    Volloch, V., and Housman, D., 1982, J. Cell Biol. 93: 390–394.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • William Thierfelder
    • 1
  • Patrick Cummings
    • 1
  • Peter Fraser
    • 1
  • Peter J. Curtis
    • 1
  1. 1.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA

Personalised recommendations