The Structure and Regulation of the Human Carbonic Anhydrase I Gene

  • Peter H. W. Butterworth
  • Jonathan H. Barlow
  • Hugh J. M. Brady
  • Mina Edwards
  • Nicholas Lowe
  • Jane C. Sowden


It has long been known that the genes coding for the closely related carbonic anhydrase (CA) I and II isozymes are tightly linked,19 and recent data from the analysis of somatic cell hybrids using cloned molecular probes have located not only CA I and CA II but also CA III to the long arm of chromosome 8.4,14 In collaboration with Yvonne Edwards’ group, we have used pulse-field electro-phoresis of large fragments of human DNA to show that the three genes lie within 200 kb of each other (unpublished data). Because these three genes have quite different patterns of tissue-specific expression (reviewed in reference 17), their proximity on chromosome 8 poses interesting questions concerning the molecular events responsible for differential gene activity. In the first instance, we need to define the organization of each gene and the characteristics of each transcription unit. The CA III gene, which is expressed in muscle and the liver of male rats, and the more generally expressed CA II gene have been cloned by groups in London12 and Ann Arbor,18 respectively; we have cloned the entire region containing the human CA I transcription unit, which is activated late in fetal development and expressed at high levels in erythroid tissues. It is now known that there is a second promoter within this transcription unit which is functional in colon in mice7 and humans (our unpublished data). Presented below is an outline of our current progress in identifying the different levels at which expression of the CA I gene is regulated in erythroid cells.


Carbonic Anhydrase Globin Gene Erythroid Cell Transcription Unit Human Carbonic Anhydrase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baron, M. H., and Maniatis, T, 1986, Cell 46: 591–602.PubMedCrossRefGoogle Scholar
  2. 2.
    Brady, H. J. M., Lowe, N., Sowden, J. C., Barlow, J. H., and Butterworth, P. H. W, 1989, Biochem. Soc. Trans. 17: 184–185.Google Scholar
  3. 3.
    Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J., 1979, Biochemistry 18: 5294–5299.PubMedCrossRefGoogle Scholar
  4. 4.
    Davis, M. B., West, L. F, Barlow, J. H., Butterworth, P H. W, Lloyd, J. C., and Edwards, Y. H., 1988, Somat. Cell Mol. Genet. 13: 173–178.CrossRefGoogle Scholar
  5. 5.
    deBoer, E., Antoniou, M., Mignotte, V., Wall, L., and Grosveld, G., 1988, EMBO J. 7: 4203–4212.PubMedGoogle Scholar
  6. 6.
    Evans, T, Treitman, M., and Felsenfeld, G., 1988, Proc. Natl. Acad. Sci. USA 85: 5976–5980.PubMedCrossRefGoogle Scholar
  7. 7.
    Fraser, P, Cummings, P, and Curtis, P, 1989, Mol. Cell. Biol. 9: 3308–3313.PubMedGoogle Scholar
  8. 8.
    Fried, M., and Crothers, D. M., 1981, Nucleic Acids Res. 9: 6505–6525.PubMedCrossRefGoogle Scholar
  9. 9.
    Galas, D. J., and Schmitz, A., 1978, Nucleic Acids Res. 5: 3157–3170.PubMedCrossRefGoogle Scholar
  10. 10.
    Hardeman, E. C., Chiu, C.-P, Minty, A., and Blau, H., 1986, Cell 47: 123–130.PubMedCrossRefGoogle Scholar
  11. 11.
    Konialis, C. P., Barlow, J. H., and Butterworth, P. H. W, 1985, Proc. Natl. Acad. Sci. USA 82: 663–667.PubMedCrossRefGoogle Scholar
  12. 12.
    Lloyd, J., Brownson, C., Tweedie, S., Charlton, J., and Edwards, Y. H., 1987, Genes Dev. 1: 594–602.PubMedCrossRefGoogle Scholar
  13. 13.
    Melton, D. A., Krieg, P. A., Sebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R., 1984, Nucleic Acids Res. 12: 7035–7056.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakai, H., Byers, M. G., Venta, P J., Tashian, R. E., and Shows, T. B., 1987, Cytogenet. Cell Genet. 44: 234–235.PubMedCrossRefGoogle Scholar
  15. 15.
    Perkins, N. D., Nicolas, R. H., and Goodwin, G. H., 1989, Nucleic Acids Res. 17: 1299–1314.PubMedCrossRefGoogle Scholar
  16. 16.
    Plumb, M., Frampton, J., Wainwright, H., Walker, M., Macleod, K., Goodwin, G., and Harrison, P, 1989, Nucleic Acids Res. 17: 72–92.CrossRefGoogle Scholar
  17. Tashian, R. E., Hewett-Emmett, D., and Goodman, M., 1983, in: Curr. Top. Biol. Med. Res. 7:79–100.Google Scholar
  18. 18.
    Venta, P. J., Montgomery, J. C., Hewett-Emmett, D., Wiebauer, K., and Tashian, R. E., 1985, J. Biol. Chem. 260: 12130–12135.PubMedGoogle Scholar
  19. 19.
    Venta, P. J., Shows, T. B., Curtis, P J., and Tashian, R. E., 1983, Proc. Natl. Acad. Sci. USA 80: 4437–4440.PubMedCrossRefGoogle Scholar
  20. 20.
    Wall, L., DeBoer, E., and Grosveld, F., 1988, Genes Del,. 2: 1089–1100.Google Scholar
  21. 21.
    Wildeman, A. G., Sassone-Corsi, P, Grundstrom, T, Zenke, M., and Chambon, P, 1984, EMBO J. 3: 3129–3133.PubMedGoogle Scholar
  22. 22.
    Zinn, K., Di Maio, D., and Maniatis, T., 1983, Cell 34: 865–879.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Peter H. W. Butterworth
    • 1
  • Jonathan H. Barlow
    • 2
  • Hugh J. M. Brady
    • 2
  • Mina Edwards
    • 2
  • Nicholas Lowe
    • 2
  • Jane C. Sowden
    • 2
  1. 1.University of SurreyGuilford, SurreyUK
  2. 2.Department of BiochemistryUniversity College LondonLondonUK

Personalised recommendations