Skip to main content

Chemical Coding of Neurons in the Gastrointestinal Tract

  • Chapter
Sensory Nerves and Neuropeptides in Gastroenterology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 298))

Abstract

The gastrointestinal tract, unlike most of the other internal organs, contains a rich and complex neuronal system embedded within its wall. The first description of this system dates back to the middle of the last century when Meissner and Auerbach first described the rich neuronal network made of microganglia and nerve bundles forming the myenteric and submucous plexuses (Meissner, 1857; Auerbach, 1864). By the turn of the century Bayliss and Starling (1889) first, followed by Langley (1921), provided evidence that this system, named then the Enteric Nervous System (ENS) controls coordinated motor functions in isolation from the central nervous system. In addition the intestine receives inputs from the central nervous system via sympathetic and parasympathetic nerves and sends sensory information via vagal and spinal afferent neurons. Between the beginning of this century and around twenty years ago the attempts to identify neuroanatomically the different classes of enteric neurons involved in the control of intestinal functions were hampered by the inability of the neurohistological techniques to distinguish specific neuronal groups within the apparently homogeneous maze of nerve cells and nerve fibres which form the ENS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach, L., 1864, Fernere vorlaufige Mitteilung uber den Nervenapparate des Darmes, Arch. Pathol. Anat. Physiol., 30: 457.

    Google Scholar 

  • Bartho, L., Holzer, P., Leander, S., and Lembeck, F., 1989, Evidence for an involvement of substance P, but not cholecysto-kinin-like peptides, in hexamethonium-resistant intestinal peristalsis, Neuroscience, 28: 211.

    Article  PubMed  CAS  Google Scholar 

  • Bayliss, W.M., and Starline, E.H., 1899, The movements and innervation of the small intestine, J. Physiol. (Lond.), 24: 100.

    Google Scholar 

  • Bornstein, J.C., Costa, M., and Furness, J.B., 1986, Synaptic inputs to immunohistochemically identified neurons in the submucous plexus of the guinea-pig small intestine, J. Physiol., 381: 465.

    PubMed  CAS  Google Scholar 

  • Bornstein, J.C., Costa, M., Furness, J.B., and Lees, G.M., 1984, Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurones of guinea-pig small intestine, J. Physiol., 351: 313.

    PubMed  CAS  Google Scholar 

  • Bornstein, J.C., and Furness, J.B., 1988, Correlated electrophysiological and histochemical studies of submucous neurons and their contribution to understanding enteric neural circuits, J. Autonom. Nerv. System, 25: 1.

    Article  CAS  Google Scholar 

  • Bornstein, J.C., Furness, J.B., and Costa, M., 1989, An electrophysiological comparison of substance P immunoreactive neurons with other neurons in the guinea-pig submucous plexus, J. Autonom. Nerv. Syst., 26: 113.

    Article  CAS  Google Scholar 

  • Brookes, S.J.H., and Costa, M., 1990, Identification of motor neurones in the guinea pig small intestine by retrograde transport in vitro and immunohistochemistry, Proc. Aust. Neurosc. Soc., 1: 59.

    Google Scholar 

  • Cooke, H.J., 1989, Neuroeffector relations in the intestinal mucosa in vitro, in: “Nerves and the Gastrointestinal Tract” Section III, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Costa, M., Furness, J.B., and Gibbins, I.L., 1986, Chemical coding of enteric neurons, Progress in Brain Res., 68: 217.

    Article  CAS  Google Scholar 

  • Costa, M., Furness, J.B., and Llewellyn-Smith, I.J., 1987, Histochemistry of the enteric nervous system, in: “Physiology of the Gastrointestinal Tract,” L.R. Johnson, ed., Raven Press, New York.

    Google Scholar 

  • Costa, M., Furness, J.B., Llewellyn-Smith, I.J., Murphy, R., Bornstein, J.C., and Keast, J.R., 1985, Functional roles for substance P-containing neurons in the gastrointestinal tract, in: “Metabolism and Biological Actions,” C.C. Jordan and P. Oehme, eds., Taylor & Francis, London.

    Google Scholar 

  • Costa, M., Furness, J.B., Pullin, C.O., and Bornstein, J., 1985, Substance P neurons mediate non-cholinergic transmission to the circular muscle of the guinea-pig intestine, Naunyn-Schmiedeberg’s Arch. Pharmacol., 328: 446.

    Article  CAS  Google Scholar 

  • Costa, M., Steele, P., and Brookes, S., 1990, Immunohistochemi-cal evidence for the presence of the calcium binding protein calretinin in enteric neurons, Proc. Aust. Neurosc. Soc., 1: 67.

    Google Scholar 

  • Dockray, G.J., Green, T., and Varro, A., 1989, The afferent peptidergic innervation of the upper gastrointestinal tract, in: “Nerves and the Gastrointestinal Tract” Section I, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Ekblad, E., Hakanson, R., and Sundler, F., 1989, Projections of enteric peptide-containing neurons in the rat, in: “Nerves and the Gastrointestinal Tract” Section I, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Furness, J.B. and Costa, M., 1987, “The Enteric Nervous System,” Churchill-Livingstone.

    Google Scholar 

  • Galligan, J.J., Jiang, M.-M., Shen, K.-Z., and Surprenant, A., 1990, Substance P mediates neurogenic vasodilatation in extrinsically denervated guinea-pig submucosal arterioles, Journal of Physiology, 420: 247.

    Google Scholar 

  • Gibbins, I.L., Furness, J.B., Costa, M., Macintyre, I., Hillyard, C.J., and Girgis, S., 1985, Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea-pigs, Neurosci. Lett., 57: 125.

    Article  PubMed  CAS  Google Scholar 

  • Grundy, D., 1988, Vagal control of gastrointestinal function, Baillieres Clinical Gastroenterology, 2: 23.

    Article  CAS  Google Scholar 

  • Holzer, P., 1988, Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides, Neuroscience, 24: 739.

    Article  PubMed  CAS  Google Scholar 

  • Holzer, P., 1989, Ascending enteric reflex: multiple neurotransmitter systems and interactions, Am. J. Physiol., 256: G540.

    Google Scholar 

  • Iyer, V., Bornstein, J.C., Costa, M., Furness, J.B., Takahashi, Y., and Iwanga, T., 1988, Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for a calcium-binding protein, J. Autonom. Nerv. Sys., 22: 141.

    Article  CAS  Google Scholar 

  • Katayama, Y., Lees, G.M., and Pearson, G.T., 1986, Electrophysiology and morphology of vasoactive intestinal peptide immunoreactive neurones of the guinea-pig ileum, J. Physiol., 378: 1.

    PubMed  CAS  Google Scholar 

  • Kirchgessner, A.L., and Gershon, M.D., 1988, Projections of submucosal neurons to the myenteric plexus of the guinea pig intestine: In vitro tracing of microcircuits by retrograde and anterograde transport, Journal of Comparative Neurology, 277: 487.

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner, A.L., and Gershon, M.D., 1989, Identification of vagal and submucosal inputs to the myenteric plexus by retrograde and anterograde transport, in: “Nerves and the Gastrointestinal Tract,” Section I, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Langley, J.N., 1921, “The Autonomic Nervous System,” Part 1, Cambridge.

    Google Scholar 

  • Lees, G.M., Leishman, D.J., and Pearson, G.T., 1989, Electrophysiological characteristics of guinea-pig myenteric plexus neurons immunoreactive for dynorphin A(1–8), in: “Nerves and the Gastrointestinal Tract,” Section I, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Lundgren, O., 1989, Enteric nervous control of mucosal functions of the small intestine in vivo, in: “Nerves and the Gastrointestinal Tract,” Section III, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Mei, N., 1983, Sensory structures in the viscera, in: “Progress in Sensory Physiology,” Vol. 4, D. Ottoson, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Meissner, G., 1857, Über die Nerven der Darmwand, Z. Ration. Med. N.F., 8: 364.

    Google Scholar 

  • Neild, T.O., Shen, K.-Z., and Surprenant, A., 1990, Vasodilatation of arterioles by acetylcholine released from single neurones in the guinea-pig submucosal plexus, Journal of Physiology, 420: 247.

    PubMed  CAS  Google Scholar 

  • North, R.A., 1982, Electrophysiology of the enteric nervous system, Neuroscience,7: 315.

    Article  PubMed  CAS  Google Scholar 

  • Papka, R.E., Furness, J.B., Delia, N.G., Morphy, R., and Costa, M., 1984, Time course of effect of capsaicin on ultrastructure and histochemistry of substance P immunoreactive nerves associated with the cardiovascular system of the guinea-pig, Neuroscience, 12: 1277.

    Article  PubMed  CAS  Google Scholar 

  • Pompolo, S., Furness, J.B., Bornstein, J.C., Hendriks, R., and Trussel, D.C., 1989, Dogiel type II neurons in the guineapig small intestine: ultrastructure in relation to other characteristics, in: “Nerves and the Gastrointestinal Tract,” Section I, M.V. Singer and H. Goebell, eds., MTP Press, Netherlands.

    Google Scholar 

  • Smith, T.K., Bornstein, J.C., and Furness, J.B., 1990, Distension-evoked ascending and descending reflexes in the circular muscle of guinea-pig ileum: an intracellular study, Journal of the Autonomic Nervous System, 29: 203.

    Article  PubMed  CAS  Google Scholar 

  • Steele, P.A., and Costa, M., 1990, Immunohistochemical identification of cholinergic neurons in the guinea-pig ileum, Proc. Aust. Neurosc. Soc., 1: 130.

    Google Scholar 

  • Tonini, M., and Costa, M., 1990, A pharmacological analysis of the neuronal circuitry involved in distension-evoked enteric excitatory reflex, Neuroscience, in press.

    Google Scholar 

  • Vickers, J.C., Costa, M., Vitadello, M., and Dahl, D., 1989, Neurofilament immunoreactivity in the coeliac ganglia of the guinea-pig, Australian Neuroscience Society, February, Abstract.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Costa, M., Brookes, S., Steele, P., Vickers, J. (1991). Chemical Coding of Neurons in the Gastrointestinal Tract. In: Costa, M., Surrenti, C., Gorini, S., Maggi, C.A., Meli, A. (eds) Sensory Nerves and Neuropeptides in Gastroenterology. Advances in Experimental Medicine and Biology, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0744-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0744-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0746-2

  • Online ISBN: 978-1-4899-0744-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics