Advertisement

Structurally Novel Platinum Antitumor Compounds

  • Nicholas Farrell

Abstract

The more widespread and effective use of platinum complexes in cancer treatment is limited by inherent resistance (limited activity against many common human tumors) and the phenomenon of acquired drug resistance (reduced efficacy upon repeated treatment). The goals for new platinum complex synthesis thus remain activity in cisplatin-resistant cells and an altered spectrum of antitumor activity. Drug modifications may further allow for reduced toxicity and altered mode of delivery, such as by oral route or by liposome encapsulation. The complex biochemical factors which affect acquired resistance and cytotoxicity in both murine and human tumor cell lines include platinum uptake and efflux, enhanced repair of Pt-DNA lesions and increased levels of glutathione and/or metallothionein in resistant cells. Chemical modification directed to overcoming one or more of these factors can thus increase activity in cisplatin-resistant cells. Delineation of the molecular mechanisms of the various contributing factors to resistance can permit design of strategies to diminish or overcome completely the resistance. Clinical application of these studies could, in principle, produce a very useful adjunct to cisplatin treatment.

Keywords

Antitumor Activity Resistance Factor Human Tumor Cell Line Platinum Complex Platinum Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Burchenal, K. Kalaher, T. O’Toole and J. Chisholm, Cancer Res. 37:3455, 1977.PubMedGoogle Scholar
  2. 2.
    M.M. Jennerwein, A. Eastman and A. Khokhar, Chem.-Biol. Inter 70:39, 1989.CrossRefGoogle Scholar
  3. 3.
    J.D. Page, I. Husain, A. Sancar and S.G. Chaney, Biochemistry 29:1016, 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    N. Farrell, D. Kiley, W. Schmidt, and M.P. Hacker, Inorg. Chem. 29:397, 1990.CrossRefGoogle Scholar
  5. 5.
    N. Farrell, T. Ha Tam, J.-P. Souchard, F.L Wimmer, S. Cros and N.P. Johnson, J. Med. Chem. 32:2240, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    N.P. Farrell, S.G. de Almeida, K.A. Skov, J. Am. Chem. Soc. 110:5018, 1988.CrossRefGoogle Scholar
  7. 7.
    N. Farrell, Y. Qu and M.P. Hacker, J. Med. Chem. 33:2179, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    J.D. Roberts, B. Van Houten, Y. Qu, and N.P. Farrell, Nuc. Acids Res. 17:9719, 1989.CrossRefGoogle Scholar
  9. 9.
    N. Farrell, Metal Complexes as Radiosensitizers, in “Prog. Clin. Biol. Med.,” vol. 10, p.90, M.J. Clarke, ed., Springer-Verlag, Berlin (1989).Google Scholar
  10. 10.
    W.I. Sundquist, K.J. Ahmed, L.S. Hollis and S.J. Lippard, Inorg. Chem. 25:1524, 1987.CrossRefGoogle Scholar
  11. 11.
    C.L. Litterst, Pharmac. Ther. 38:215, 1988.CrossRefGoogle Scholar
  12. 12.
    D.L Bodenner, P. Dedon, P.C. Keng, J.C. Katz, R.F. Borch, Cancer Res. 46:2745, 1986.PubMedGoogle Scholar
  13. 13.
    S.B. Howell, R. Taetle, Cancer Treat. Rep. 64:611, 1980.PubMedGoogle Scholar
  14. 14.
    J.M. Yuhas, F. Culo, Cancer Treat. Rep. 64:57, 1980.PubMedGoogle Scholar
  15. 15.
    A. Eastman, V. Richon, Chem.-Biol. Inter. 61:241, 1987.CrossRefGoogle Scholar
  16. 16.
    N.P. Johnson, P. Lapetoule, H. Razaka, G. Villani, in Biochemical Mechanisms of Platinum Anitumor Drugs (eds. D.C.H. McBrien and T. Slater) p.1. IRL Press, Oxford (1986).Google Scholar
  17. 17.
    R.B. Ciccarelli, M.J. Solomon, A. Varshavsky, S.J. Lippard, Biochemistry 24:7533, 1985.PubMedCrossRefGoogle Scholar
  18. 18.
    K.R. Harrap, M. Jones, J. Siracky, LA. Pollard and LR. Kelland, Annals of Oncology 1:65, 1990.PubMedGoogle Scholar
  19. 19.
    N. Farrell, Unpublished results.Google Scholar
  20. 20.
    A. Eastman and M. Barry, Biochemistry 26:3303, 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    A.L Pinto and S. Lippard, Proc. Natl. Acad. Sci. USA 82:4616, 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    A. Eastman, M. Jennerwein and D.L. Nagel, Chem.-Biol. Inter. 67:71, 1988.CrossRefGoogle Scholar
  23. 23.
    N. Farrell and Y. Qu, Inorg. Chem. 38:3416, 1989.CrossRefGoogle Scholar
  24. 24.
    Y. Qu and N. Farrell, J. Inorg. Biochem. 40:255, 1990.CrossRefGoogle Scholar
  25. 25.
    Y. Qu and N. Farrell, Inorg. Chem. Submitted.Google Scholar
  26. 26.
    Y. Qu and N. Farrell, J. Am. Chem. Soc. Submitted.Google Scholar
  27. 27.
    J.D. Hoeschele, A.J. Kraker, Y. Qu, B. Van Houten and N. Farrell, Bis(platinum) Complexes. Chemistry, Antitumor Activity and DNA-Binding, in “Molecular Basis of Specificity in Nucleic Acid-Drug Interactions,” vol.23, p. 301, B. Pullman and J. Jortner, Eds., Kluwer Academic Press, Dordrecht (1990).CrossRefGoogle Scholar
  28. 28.
    N. Farrell, Y. Qu, L. Feng and B. Van Houten, Biochemistry 29:9522, 1990.PubMedCrossRefGoogle Scholar
  29. 29.
    E. Friedberg, Microbiological Reviews 52:70, 1988. 30. P. Colamarino and P.L. Orioli, J. Chem. Soc. (Dalton) 1656 (1975).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Nicholas Farrell
    • 1
  1. 1.Department of ChemistryUniversity of Vermont and The Vermont Regional Cancer CenterBurlingtonUSA

Personalised recommendations