Molecular Aspects of Repair and Mutagenesis of cis-Platinum-Induced Lesions

  • Dominique Burnouf
  • Corinne Gauthier
  • Jean-Claude Chottard
  • Robert P. P. Fuchs


The conversion of DNA lesions into mutations is an active biochemical process. Due to the remarkable efficiency of the error free repair mechanisms only a very small number of DNA lesions will eventually be processed into a mutation. Indeed, under normal conditions, less than one percent of DNA lesions give rise to mutations. This makes the biochemical study of the mechanisms involved in mutagenesis very difficult. As a first molecular approach, the study of the mutational specificity of a given mutagen will provide important informations concerning the mechanisms that are involved. This is particularly true if the analysis of the mutational specificity can be performed in hosts having altered genotypes for repair and (or) mutagenesis. Bacteria are in this respect the organisms of choice, due to the large number of existing repair, replication and recombination mutants.


Mutation Frequency Excision Repair Plasmid pBR322 Base Pair Substitution Tetracycline Resistance Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fuchs, R.P.P., Schwartz, N. and Daune, M.P. (1981) Nature (London) 294, 657–659.CrossRefGoogle Scholar
  2. 2.
    Koffel-Schwartz, N., Verdier, J.M., Bichara, M., Freund, A.M., Daune, M.P. and Fuchs, R.P.P. (1984) J. Mol. Biol. 177, 33–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Bichara, M. and Fuchs, R.P.P. (1985) J. Mol. Biol. 183, 341–351.PubMedCrossRefGoogle Scholar
  4. 4.
    Basu, A.K. and Essigman, J.M. (1988) Chem. Res. Toxicol. 1, 1–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Banerjee, S.K., Christensen R.B., Lawrence C.W., and Leclerc, J.E.(1988) Proc. Natl.Acad. Sci. USA, 85, 8141–8145.PubMedCrossRefGoogle Scholar
  6. 6.
    Loechler, E.L., Green, C.L. and Essigman, J.M. (1984) Proc. Natl.Acad. Sci. USA 81, 6271–6275.PubMedCrossRefGoogle Scholar
  7. 7.
    Lasko, D.D., Harvey, S.C., Malaikal, S.B., Kadlubar, F.F. and Essigman, J.M. (1988) J. Biol. Chem. 263, 15429–15435.PubMedGoogle Scholar
  8. 8.
    Burnouf, D., Koehl, P. and Fuchs, R.P.P. (1989) Proc. Natl. Acad. Sci. USA 86, 4147–4151.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Houten, B., Gamper, H., Hearst, J.E., and Sancar, A. (1988) J. Biol. Chem., 263, 16553–16560.PubMedGoogle Scholar
  10. 10.
    Koehl, P., Valladier, P., Lefevre, J.F. and Fuchs, R.P.P. (1989) Nucleic Acids Res., 17, 9531–9541.PubMedCrossRefGoogle Scholar
  11. 11.
    Kemmink, J., Boelens, R., Koning, T., van der Marel, G.A., Van Boom, J.H., Kaptein, R. (1987) Nucl. Acids Res. 15, 4645–4653.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Hemelryck, B., Guittet, E., Chottard, G., Girault, J.P., Huynh-Dinh, T., Lallemand, J.Y., Igolen, J. and Chottard, J.C (1984) J. Amer. Chem. Soc. 106, 3037–3039.CrossRefGoogle Scholar
  13. 13.
    Husain, I., Griffith, J. and Sancar, A. (1988) Proc. Natl. Acad. Sci. USA 85, 2558–2562.PubMedCrossRefGoogle Scholar
  14. 14.
    Rice J.A., Crothers, D.M., Pinto A.L. and Lippard, S.J. (1988) Proc. Natl. Acad. Sci. USA 85, 4158–4161.PubMedCrossRefGoogle Scholar
  15. 15.
    Den Hartog, J.H.J., Altona, C., Van Boom, J.H., Van der Marel, G.A., Haasnoot, C.A.G. and Reedijk, J. (1985) J. Biomol. Struct. Dyn. 2, 1137–1155.CrossRefGoogle Scholar
  16. 16.
    Seeberg, E. and Fuchs, R.P.P., (1990) Proc. Natl. Acad. Sci. USA, 87, 191–194.PubMedCrossRefGoogle Scholar
  17. 17.
    Page J.D., Husain I., Chaney S.G. and Sancar A. (1987), in “Platinum and other metal coordination compounds in Cancer Chemotherapy”, Martinus Nighoff-Publishing, 115-126.Google Scholar
  18. 18.
    Page, J. D., Husain, I., Sancar, A., and Chaney, S.G. (1990) Biochemistry, 29, 1016–1024.PubMedCrossRefGoogle Scholar
  19. 19.
    Girault, J.P., Chottard, J.C, Guittet, E.R., Lallemand, J.Y., Huynh-Dinh T. and Igolen, J.(1982) Biochem. Biophys. Res. Commun. 109, 1157–1163.PubMedCrossRefGoogle Scholar
  20. 20.
    Caradonna, J.P., Lippard, S.J., Gait, M.J. and Singh, M. (1982) J. Amer. Chem. Soc. 104, 5793–5795.CrossRefGoogle Scholar
  21. 21.
    Sherman S. and Lippard S.J. (1988) Chem. Rev., 87, 1153–1181.CrossRefGoogle Scholar
  22. 22.
    Eastman, A. (1983) Biochemistry 22, 3927–3933.PubMedCrossRefGoogle Scholar
  23. 23.
    Fichtinger-Schepman, A.M.J., Van der Meer, J.L., den Hartog, J.H.J., Lohman, P.H.M. and Reedijk, J. (1985) Biochemistry 24, 707–713.PubMedCrossRefGoogle Scholar
  24. 24.
    Eastman, A. (1986) Biochemistry 25, 3912–3915.PubMedCrossRefGoogle Scholar
  25. 25.
    Husain, I., Chaney, S.G., and Sancar, A. (1985) J. Bacteriol., 163, 817–823.PubMedGoogle Scholar
  26. 26.
    Beck, D.J., Popoff, S., Sancar, A., and Rupp, W.D. (1985) Nucl. Acids Res., 13, 7395–7412.PubMedCrossRefGoogle Scholar
  27. 27.
    Popoff, S.C., Beck, D.J., Rupp, W.D., (1987) Mutat. Res., 183, 129–137.PubMedCrossRefGoogle Scholar
  28. 28.
    Koffel-Schwartz, N., Maenhaut-Michel, G. and Fuchs, R.P.P. (1987) J. Mol. Biol. 193, 651–659.PubMedCrossRefGoogle Scholar
  29. 29.
    Burnouf, D., Daune, M. and Fuchs, R.P.P. (1987) Proc. Natl. Acad. Sci. USA 84, 3758–3762.PubMedCrossRefGoogle Scholar
  30. 30.
    Burnouf, D., Gauthier, C., Chottard, J.-C., and Fuchs, R.P.P., (1990) Proc. Nat. Acad. Sci. USA 87, 6087–6091.PubMedCrossRefGoogle Scholar
  31. 31.
    Koehl, P., Burnouf, D., and Fuchs, R.P.P. (1989) J. Mol. Biol. 207, 355–364.PubMedCrossRefGoogle Scholar
  32. 32.
    Piette, J., Gamper, H.B., van de Vorst, A., and Hearst, J.E. (1988) Nucleic Acids Res. 16, 9961–9977.PubMedCrossRefGoogle Scholar
  33. 33.
    Kozelka, J., Petsko, G.A., Lippard, S.J. (1985) J. Amer. Chem. Soc. 107, 4079–4081.CrossRefGoogle Scholar
  34. 34.
    Kozelka, J., Petsko, G.A., Quigley, G.J., Lippard, S.J. (1986) Inorg. Chem. 25, 1075–1077.CrossRefGoogle Scholar
  35. 35.
    Marrot, L. and Leng, M. (1989) Biochemistry 28, 1454–1461.PubMedCrossRefGoogle Scholar
  36. 36.
    Den Hartog, J.H.J., Altona, C, Chottard, J.C., Girault, J.P., Lallemand, J.Y., de Leeuw, F.A.A.M., Marcellis, A.T.M. and Reedijk, J. (1982) Nucl. Acids Res. 10, 4715–4730.CrossRefGoogle Scholar
  37. 37.
    Herman F., Kozelka J., Guittet E., Storen V., Huynh-Dinh T., Igolen J., Lallemand J.Y. and Chottard J.C., submitted.Google Scholar
  38. 38.
    Van Hemelryck, B., Girault, J.P., Chottard, G., Valadon, P., Laoui, A. and Chottard, J.C.(1987) Inorg. Chem. 26, 787–795.CrossRefGoogle Scholar
  39. 39.
    Dijt, F.J., Chottard, J.C., Girault, J.P., and Reedijk, J. (1989), Eur. J. Biochem., 179, 333–344.CrossRefGoogle Scholar
  40. 40.
    Schwartz A., Marrot L. and Leng M., (1989) Biochemistry, 28, 7975–7979.PubMedCrossRefGoogle Scholar
  41. 41.
    Schaaper, R.M., Kunkel, T.A., and Loeb, L.A. (1983) Proc. Nat. Acad. Sci. USA 80, 487–491.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Dominique Burnouf
    • 1
  • Corinne Gauthier
    • 2
  • Jean-Claude Chottard
    • 2
  • Robert P. P. Fuchs
    • 1
  1. 1.Groupe de Cancérogenèse et de Mutagenèse Moléculaire et StructuraleIBMC du CNRSStrasbourgFrance
  2. 2.Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, UA400 CNRSParisFrance

Personalised recommendations