Metallization of Polytetrafluoroethylene (PTFE) by Means of Plasma-Enhanced Chemical Vapour Deposition

  • H. Meyer
  • R. Schulz
  • H. Suhr
  • C. Haag
  • K. Horn
  • A. M. Bradshaw


A process has been developed for coating PTFE with copper. It consists of a plasma pretreatment with reactive gases such as O2 or CF4/O2 followed by a plasma deposition of a thin metallic layer of Pd, Pt, Au, or Cu and subsequent electroless and electrochemical copper plating. The coatings show excellent adhesion properties, limited only by the cohesive strength of the substrate. The PTFE surfaces have been studied with scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) after different steps of the pretreatment. SEM reveals directly the roughening of the PTFE surface by the plasma etching step. XPS results for Pd-activated surfaces point to a chemical interaction between Pd and the fluorine atoms of the PTFE. This new process of metallization is a simple technique, avoids hazardous chemicals, requires no decontamination and can equally well be applied to other polymers.


Plasma Etching Peel Test Peel Strength Plasma Deposition PTFE Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Mittal, J. Vac. Sci. Technol. 13, 19 (1976).CrossRefGoogle Scholar
  2. 2.
    F.A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry”, 4th edition, Wiley Interscience, New York, 1980.Google Scholar
  3. 3.
    W. Goldie, “Metallic Coatings of Plastics” vol. 2, p. 303–323, Electrochemical Publ. Hatch End, Middlesex, Great Britain, 1969.Google Scholar
  4. 4.
    R. Michael, D. Stulik, J. Vac. Sci. Technol., 1861 (1986).Google Scholar
  5. 5.
    D.R. Wheeler and S.V. Pepper, J. Vac. Sci. Technol. 20, 442 (1982).CrossRefGoogle Scholar
  6. 6.
    J.S. Sovey, J. Vac. Sci. Technol. 16, 813 (1979).CrossRefGoogle Scholar
  7. 7.
    J.E.E. Baglin, G.J. Clark, and J. Boettiger, Mater. Res. Soc. Symp. Proc. 25, 179 (1984).CrossRefGoogle Scholar
  8. 8.
    C. Chang, J.E.E. Baglin, A.G. Schrott, and K.C. Lin, Appl. Phys. Lett. 51, 103 (1987).CrossRefGoogle Scholar
  9. 9.
    L.M. Siperko and R.R. Thomas J. Adhesion. Sci. Technol. 3, 157 (1989).CrossRefGoogle Scholar
  10. 10.
    C. Haag and H. Suhr, Appl. Phys. A47, 199 (1988).Google Scholar
  11. ll.
    E. Feurer and H. Suhr, Thin Solid Films 157, 81 (1988).CrossRefGoogle Scholar
  12. 12.
    E. Feurer, S. Krauss, and H. Suhr, J. Vac. Sci. Technol. A75 2799 (1989).Google Scholar
  13. 13.
    E. Feurer and H. Suhr, Appl. Phys. A4, 171 (1987).Google Scholar
  14. 14.
    C. Oehr and H. Suhr, Appl.Phys., M5, 154 (1988).Google Scholar
  15. 15.
    NEOGANTH ™, Technical Bulletin Schering AG, Berlin, Germany.Google Scholar
  16. 16.
    J. Friedrich, H. Wittrich, and J. Gähde, Acta Polymerica 31, 59 (1980).CrossRefGoogle Scholar
  17. 17.
    H. Suhr, A. Etspüler, E. Feurer, and C. Oehr, Plasma. Chem. Plasma Proc. 8, 9 (1988).CrossRefGoogle Scholar
  18. 18.
    M. Chtaib, E.M. Roberfroid, Y. Novis, J.J. Pireaux, R. Caudano, P. Lutgen, and G. Feyder, J. Vac. Sci. Technol. A7, 3233 (1989).Google Scholar
  19. 19.
    C. D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Mullenberg, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Corp, Eden Prairie, Minnesota (1978).Google Scholar
  20. 20.
    H. Batzer, Editor, “Polymere Werkstoffe”, p. 216, Thieme Verlag, Stuttgart, 1984.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. Meyer
    • 1
  • R. Schulz
    • 1
  • H. Suhr
    • 2
  • C. Haag
    • 2
  • K. Horn
    • 3
  • A. M. Bradshaw
    • 3
  1. 1.Dept. GT-FOSchering AGBerlin 65Germany
  2. 2.Dept. of Organic ChemistryUniversity of TübingenTübingenGermany
  3. 3.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin 33Germany

Personalised recommendations