Thin Film Adhesion Measurement Using Excimer Laser Ablation and Tensile Extension Tests

  • W.-C. Lee
  • V. W. Lindberg
  • P. H. Wojciechowski
  • F. J. Duarte


We propose and demonstrate two tests for determining the adhesion of thin films deposited on organic and inorganic substrates. The tests are (i) ablation by direct irradiation of the film using an excimer laser, and (ii) film fracture by tensile extension of the film-substrate system. For the laser test, the film can be any material that sufficiently absorbs UV laser radiation (e.g. metal or polymer). For the tensile test, the film can be any material that is less ductile than the substrate. The substrate can be rigid or flexible. In the laser test, pulses of various energy densities are directed onto different sites at a local region of the sample. At the threshold of damage, a visible crack appears and the corresponding energy density is used as a quantitative measure of adhesion. Results for metallic thin films on untreated and plasma-treated substrates correlate well with other adhesipn tests (e.g. tape peel). The damage mechanism appears to be a thermal wave induced by absorption of the laser beam. In the tensile test, correlation is observed between the degree of adhesion and the nature of film fracture.


Laser Ablation Interfacial Shear Stress Peel Test Tape Test Metallic Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Mittel, J. Adhesion Sci. Technol. 1, 247 (1987).CrossRefGoogle Scholar
  2. 2.
    K. L. Mittal, Electrocomponent Sci. Technol. 3, 21–42 (1976).CrossRefGoogle Scholar
  3. 3.
    J. Valli, J. Vac. Sci. Technol. A4, 3007 (1986).Google Scholar
  4. 4.
    N.C. Anderholm and A. Goodman, U. S. Patent 3,605,486 (1971).Google Scholar
  5. 5.
    J. L. Vossen, in “Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings”, STP 640, K. L. Mittal, Editor, pp. 122-133, Amer. Soc. Testing and Materials, Philadelphia, PA (1978).Google Scholar
  6. 6.
    P. H. Wojciechowski, F. J. Duarte, and A. L. Hrycin, “Proc. Int’l Conf. on Lasers’ 87”, F. J. Duarte, Editor, pp. 1097–1104, STS Press, McLean, VA (1988).Google Scholar
  7. 7.
    B. Braren, Laser surface modification of polymers and its implications for metallization, presented at this symposium.Google Scholar
  8. 8.
    S. I. Anisimov, Soviet Physics JETP 27, 182 (1968).Google Scholar
  9. 9.
    P. H. Wojciechowski and M. S. Mendolia, J. Vac. Sci. Technol. A7, 1282–88 (1989).Google Scholar
  10. 10.
    T. S. Chow, in “Adhesion Science and Technology”, L. H. Lee, Editor, Part B, p. 687, Plenum Press, New York (1975).CrossRefGoogle Scholar
  11. 11.
    R. C. Penwall, K. S. Liang, and T. S. Chow, Thin Solid Films 60, 133–139 (1979).CrossRefGoogle Scholar
  12. 12.
    B. J. Aleck, J. Appl. Mech. 16, 118 (1949).Google Scholar
  13. 13.
    C. N. Kouyumdjiev, Surface Technol. 26, 45 (1985).CrossRefGoogle Scholar
  14. 14.
    K.-S. Kim and J. Kim, ASME J. Eng. Mater. Tech. 110, 266–273 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • W.-C. Lee
    • 1
  • V. W. Lindberg
    • 1
  • P. H. Wojciechowski
    • 2
  • F. J. Duarte
    • 2
  1. 1.Materials Science and Engineering ProgramRochester Institute of TechnologyRochesterUSA
  2. 2.Research LaboratoriesEastman Kodak CompanyRochesterUSA

Personalised recommendations