Enhanced Metal/Polymer Adhesion by Ion Assisted Deposition

  • R. A. Moody
  • T. G. Tetreault
  • J. K. Hirvonen


Significant improvements in the adhesion of several metals to polymers have been achieved through the ion beam assisted deposition (IBAD) technique. Films of silver, gold, and copper were deposited via IBAD onto poly(tetrafluoroethylene) (PTFE) substrates. These films are substantially more adherent than similar non-IBAD coatings. Film characterization was performed with conventional pull tests, selective abrasion tests, optical microscopy, ESCA, RBS, and static SIMS. Evidence is given for the “smearing” of the normally sharp metal/polymer interface by the ion beam recoil events. Further analysis, however, suggests that the improved adhesion may result from an increase in the shear strength of the PTFE surface layers due to the promotion of crosslinking.


Rutherford Backscatter Spectroscopy Gate Valve Rutherford Backscatter Spectroscopy Spectrum PTFE Substrate Practical Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E.E. Baglin, Mater. Res. Soc. Symp. Proc, 47, 3 (1985).CrossRefGoogle Scholar
  2. 2.
    J.E. Griffith, Yuanxum Qiu, and T.A. Tombrello, Nucl. Instrum. Methods, 198, 607 (1982).CrossRefGoogle Scholar
  3. 3.
    Chin-An Chang, J.E.E. Baglin, A.G. Schrott, and K.C. Lin, Appl. Phys. Lett., 51(2), 13 July, 1987.Google Scholar
  4. 4.
    C.J. Sofield, C.J. Woods, C. Wild, J.C. Riviere, and L.S. Welch, Mater. Res. Soc. Symp. Proc, 25, 197 (1984).CrossRefGoogle Scholar
  5. 5.
    J.E.E. Baglin and G.J. Clark, Nucl. Instrum. Methods, B7/8, 881 (1985).Google Scholar
  6. 6.
    I.H. Loh and J.K. Hirvonen, Mater. Res. Soc. Symp. Proc, 108, 241 (1987).CrossRefGoogle Scholar
  7. 7.
    I.H. Loh, R.A. Moody, and J.C. Huang, Membrane Sci., 50, 31–49 (1990).CrossRefGoogle Scholar
  8. 8.
    Chin-An Chang, Appl. Phys. Lett., 51(16), 19 October, 1987.Google Scholar
  9. 9.
    K.L. Mittal, Polym. Eng. Sci., 17, 467 (1977).CrossRefGoogle Scholar
  10. 10.
    W.J. van Ooij and R.H.G. Brinkhuis, Surface Interface Anal., 11, 430 (1988).CrossRefGoogle Scholar
  11. 11.
    W.J. van Ooij and M.M. Nindi, Service Report on SIMS of Metal/PTFE, Polycarbonate, and Polyimide Samples, 1989.Google Scholar
  12. 12.
    W.J. van Ooij, Mater. Res. Soc. Symp. Proc, 153, 149 (1989).CrossRefGoogle Scholar
  13. 13.
    S. Noda and T. Hioki, Carbon, 22, No. 4/5, 359 (1984).CrossRefGoogle Scholar
  14. 14.
    M.S. Dresselhaus, B. Wasserman, and G.E. Wnek, Mater. Res. Soc. Symp. Proc, 27, 413 (1984).CrossRefGoogle Scholar
  15. 15.
    B. Wasserman, Ph.D. Thesis, Massachusetts Institute of Technology, 1985.Google Scholar
  16. 16.
    T. Venkatesan, L. Calcagno, B.S. Elman, and G. Foti, in “Ion Beam Modification of Insulators,” P. Mazzoldi and G.W. Arnold, editors, p.301, Elsevier, New York, 1987.Google Scholar
  17. 17.
    B.S. Elman, G. F. Blackburn, M.K. Thakur, D.J. Sandman, L.A. Samuelson, and D.G. Kenneson, Nucl. Instrum. Methods, B19/20, 872 (1987).Google Scholar
  18. 18.
    I.H. Loh, R.W. Oliver, and P. Sioshansi, Nucl. Instrum. Methods, B34, 337 (1988).Google Scholar
  19. 19.
    R.A. Moody, P.H. Lu, and I.H. Loh, Technical Reports for Phase II DOE Contract # DE-AC02-87ER80450 entitled “Electrically Conductive Polymers by Ion Implantation,” 1989.Google Scholar
  20. 20.
    Unpublished Spire results of ion beam processes on polycarbonate, PTFE, and polyimide, 1989-1990.Google Scholar
  21. 21.
    L. Torrisi, L. Calcagno, and A.M. Foti, Nucl. Instrum. Methods, B32, 142 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. A. Moody
    • 1
  • T. G. Tetreault
    • 1
  • J. K. Hirvonen
    • 1
  1. 1.Spire CorporationBedfordUSA

Personalised recommendations