Molecular Level Metal and Ceramic/Polymer Composites: Synthesis of Metal and Metal Oxide Containing Polyimides and its Relevance to Polymer Metallization

  • Ayusman Sen
  • Manish Nandi
  • Jeanine A. Conklin

Abstract

This paper is concerned with (a) the thermodynamic and kinetic binding sites for Cr(0) in polyimides, and (b) the application of the binding of metals to specific sites on the polyimide backbone to the synthesis of polymer trapped chromium and iron oxide nanoclusters (size < 1.5 nm). In the first part, the organometallic products obtained by the reaction of Cr(CO)3(MeCN)3 or Cr(CO)6 with a number of compounds that mimic the polyimide backbone were identified. A π-arene complex was formed in each case indicating that Cr(0) prefers to form π-arene complexes (even with electron deficient arene rings) rather than react with the oxygen functionalities present. Furthermore, the tendency to form a π-arene complex increases with increasing electron density on the ring. The first part also describes the synthesis and x-ray crystal structure of a charge-transfer complex of Cr(CO)6 with pyromellitic dianhydride — one of the building blocks of polyimides. The second part outlines the synthesis of polyimide-trapped metal oxide nanoclusters. Cr(C6H6)2 or Fe3(CO)12 was added to polyamic acid solutions. Following thermal curing, polyimide films containing a homogeneous dispersion of nanoclusters (size < 1.5 nm) of Cr2O3 or α-Fe(O)(OH) were obtained. Both SEM and SIMS depth profile indicated that the usually observed migration of the dopant to the polymer surface had not occurred.

Keywords

Arene Complex Pyromellitic Dian Hydride Polyamic Acid Polyimide Backbone Selected Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. T. Goosey, editor, “Plastics for Electronics,” Elsevier Sequoia, New York, 1985.Google Scholar
  2. 2.
    K. L. Mittal and J. R. Susko, editors, “Metallized Plastics 1: Fundamental and Applied Aspects,” Plenum Press, New York, 1989.Google Scholar
  3. 3.(a)
    Reference 1, Chapters 9 and 10.Google Scholar
  4. (b).
    S. D. Senturia, R. A. Miller, D. D. Denton, F. W. Smith, and H. J. Neuhaus in “Proceedings of the Second International Conference on Polyimides,” p. 107, Society of Plastics Engineers, Ellenville, NY, 1985.Google Scholar
  5. 4.(a)
    Y.-H. Kim, J. Kim, G. F. Walker, C. Feger, and S. P. Kowalczyk, J. Adhesion Sci. Technol., 2, 95 (1988).CrossRefGoogle Scholar
  6. (b).
    J. M. Burkstrand, J. Appl. Phys., 52, 4759 (1981).CrossRefGoogle Scholar
  7. 5.
    Preliminary report: M. Nandi and A. Sen, Chem. Mater., 1, 291 (1989).CrossRefGoogle Scholar
  8. 6.(a)
    R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard, A. Kaldor, S. G. Louie, M. Moscovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, and Y. Wang, J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
  9. (b).
    M. L. Steigerwald and L. E. Brus, Annu. Rev. Mater. Sci. 19, 471 (1989).CrossRefGoogle Scholar
  10. (c).
    L. E. Brus, J. Phys. Chem., 90, 2555 (1986).CrossRefGoogle Scholar
  11. 7.(a)
    A. Kaldor, D. M. Cox, and M. R. Zakin in “Molecular Surface Chemistry: Reactions of Gas-Phase Metal Clusters,” Advances in Chemical Physics, I. Prigogine, editor, Vol. 70, Pt. 2, p. 211, Wiley, New York, 1988.Google Scholar
  12. (b).
    R. J. St. Pierre and M. A. El-Sayed, J. Phys. Chem., 91, 763 (1987).CrossRefGoogle Scholar
  13. 8.(a)
    T. Kobayashi, editor, “Nonlinear Optics of Organics and Semiconductors,” Part II, Springer-Verlag, Berlin, 1989.Google Scholar
  14. (b).
    Y. Wang, N. Herron, W. Mahler, and A. Suna, J. Opt Soc. Am. B. 6, 808 (1989).CrossRefGoogle Scholar
  15. (c).
    L-T. Cheng, N. Herron, and Y. Wang, J. Appl. Phys. 66, 3417 (1989).CrossRefGoogle Scholar
  16. (d).
    R. K. Jain and R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).CrossRefGoogle Scholar
  17. 9.(a)
    K. L. Mittal, editor, “Polyimides: Synthesis, Characterization and Applications,” Vols. 1 and 2, Plenum Press, New York, 1984.Google Scholar
  18. (b).
    M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L A. Laius, “Polyimides,” Consultants Bureau, New York, 1987.Google Scholar
  19. 10.
    A search of the Chemical Abstracts (1977–90) yielded 158 and 2,845 references, respectively, on the electronic and magnetic properties of Cr2O3 and Fe2O3.Google Scholar
  20. 11.
    Recent references:(a) I. Otsuka, T. Shinada, M. Mitshuboshi, and H. Inone, Jpn. Kokai Tokkyo Koho, JP 63,182,361 (1989), CA: 110116226x.Google Scholar
  21. (b).
    H. Yamamoto, T. Doi, and S. Ozawa, Jpn. Kokai Tokkyo Koho, JP 63,172,741 (1989), CA: 110155731c.Google Scholar
  22. (c).
    G. M. Porta, J. D. Rancourt, and L. T. Taylor, Chem. Mater., 1, 269 (1989).CrossRefGoogle Scholar
  23. (d).
    J. D. Rancourt, G. M. Porta, E. S. Moyer, D. G. Madeleine, and L. Taylor, J. Mater. Res., 3, 996 (1988).CrossRefGoogle Scholar
  24. (e).
    R. K. Boggess and L T. Taylor, J. Polym. Sci., Polym. Chem. Ed., 25, 685 (1987).CrossRefGoogle Scholar
  25. (f).
    L. T. Taylor in “Proceedings of the Second International Conference on Polyimides,” p. 351, Society of Plastics Engineers, Ellenville, New York, 1985.Google Scholar
  26. (g).
    J. D. Rancourt, R. K. Boggess, and L T. Taylor, in “Proceedings of the Second International Conference on Polyimides,” p. 372, Society of Plastics Engineers, Ellenville, NY, 1985.Google Scholar
  27. (h).
    S. A. Ezzell and L. T. Taylor, Macromolecules, 17, 1672 (1984).CrossRefGoogle Scholar
  28. (i).
    S. A. Ezzell, T. A. Furtsch, E. Khor, and L. T. Taylor, J. Polym. Sci., Poly. Chem. Ed., 21, 865 (1983).CrossRefGoogle Scholar
  29. (j).
    T. A. Furtsch, L. T. Taylor, T. W. Fritz, G. Fortner, and E. Khor, J. Polym. Sci., Polym. Chem. Ed., 20, 1287 (1982).CrossRefGoogle Scholar
  30. (k).
    E. Khor and L. T. Taylor, Macromolecules, 15, 379 (1982).CrossRefGoogle Scholar
  31. (I).
    K. Ohmura, I. Shibazaki, and T. Kimura, Jpn. Kokai Tokkyo Koho, JP 79, 143,462 (1979), CA: 92130214b.Google Scholar
  32. 12.
    Previous report: M. Nandi, J. A. Conklin, L Salvati, and A. Sen, Chem. Mater., 2, 772 (1990).CrossRefGoogle Scholar
  33. 13.
    D. P. Tate, W. R. Knipple, and J. M. Augl, Inorg. Chem., 1, 433 (1962).CrossRefGoogle Scholar
  34. 14.
    Reference 9b, chapter 1.5.Google Scholar
  35. 15.
    For a discussion of Cr-arene bond strengths in (arene)2Cr complexes, see: R. Davis and L A. P. Kane-Maguire in “Comprehensive Organometallic Chemistry,” G. Wilkinson, F. G. A. Stone, and E. W. Abel, editors, Vol. 3, p. 988, Pergamon Press, New York, 1982.Google Scholar
  36. 16.
    G. Van Koten and J. G. Noltes, in reference 15, Vol. 2, Chapter 14.Google Scholar
  37. 17.
    Recent references:(a) B. D. Silverman, Macromolecules, 22, 3768 (1989).CrossRefGoogle Scholar
  38. (b).
    M. J. Goldberg, J. G. Clabes, A. Viehbeck, and C. A. Kovac, Polym. Mater. Sci. Eng., 59, 199 (1988).Google Scholar
  39. (c).
    M. J. Goldberg, J. G. Clabes, A. Viehbeck, and C. A. Kovac, Proc. Electrochem. Soc, 88-17, 103 (1988).Google Scholar
  40. (d).
    J. G. Clabes, M. J. Goldberg, A. Viehbeck, and C. A. Kovac, J. Vac. Sci. Technol., A6, 985 (1988).Google Scholar
  41. (e).
    M. J. Goldberg, J. G. Clabes, and C. A. Kovac, J. Vac. Sci. Technol., A6, 991 (1988).Google Scholar
  42. (f).
    R. Haight, R. C. White, B. D. Silverman, and P. S. Ho, J. Vac. Sci. Technol., A6, 2188 (1988).Google Scholar
  43. 18.(a)
    I. V. Bulgarovskaya, V. E. Zovodink, and V. M. Vozzhennikov, Acta. Crystallog. Sect. C: Cryst. Struct. Commun., C43, 764, 766 (1987).CrossRefGoogle Scholar
  44. (b).
    I. V. Bulgarovskaya, V. K. Bell-Skii, and V. M. Vozzhennikov, Acta. Crystallog. Sect. C: Cryst. Struct. Commun., C42, 768 (1987).CrossRefGoogle Scholar
  45. (c).
    J. J. Stezowski, R. D. Stigler, and N. Karl, J. Chem. Phys., 84, 5162 (1986).CrossRefGoogle Scholar
  46. (d).
    V. N. Baumerand V. A. Starodub, Synth. Met., 9, 467 (1984).CrossRefGoogle Scholar
  47. (e).
    R. Foster, J. Iball, S. N. Scrimgeour, and B. C. Williams, J. Chem. Soc, Perkin Trans. II, 682 (1974).Google Scholar
  48. (f).
    T. Kodoma and S. Kumakura, Bull. Chem. Soc Jpn., 47, 1081, 2146 (1974).CrossRefGoogle Scholar
  49. (g).
    J. C. A. Boeyens and F. H. Herbstein, J. Phys. Chem. 69, 2160 (1965).CrossRefGoogle Scholar
  50. 19.(a)
    B. Rees and A. Mitschler, J. Am. Chem. Soc, 98, 7918 (1976).CrossRefGoogle Scholar
  51. (b).
    A. Jost, B. Rees, and W. B. Yelon, Acta Crystallogr., B31, 2649 (1975).Google Scholar
  52. 20.(a)
    P. S. Braterman, Struct. Bonding (Berlin), 10, 57 (1972).CrossRefGoogle Scholar
  53. (b).
    P. S. Braterman, Struct. Bonding (Berlin), 26, 1 (1976).CrossRefGoogle Scholar
  54. 21.
    S. Aravamudhan, U. Haeberlen, H. Imgartinger, and C. Krieger, Molecular Phys., 38, 241 (1979).CrossRefGoogle Scholar
  55. 22.(a)
    Reference 11c.Google Scholar
  56. (b).
    E. Khor and L. T. Taylor in “Metal-Containing Polymer Systems,” J. E. Sheats, C. E. Carraher, Jr., and C. U. Pittman, Jr., Editors., p. 367, Plenum Press, New York, 1985.CrossRefGoogle Scholar
  57. 23.
    A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of Transition Ions,” p. 432, Oxford University Press, London, 1970.Google Scholar
  58. 24.
    J. C. Carver, G. K. Schweitzer, and T. A. Carlson, J. Chem. Phys., 57, 973 (1972).CrossRefGoogle Scholar
  59. 25.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, editors, “Handbook of X-Ray Photoelectron Spectroscopy,” p.42, Perkin-Elmer Physical Electronics Division, Eden Prairie, MN, 1979.Google Scholar
  60. 26.
    N. S. Mclntyre, D. G. Zetaruk, Analytical Chem., 49, 1521 (1977).CrossRefGoogle Scholar
  61. 27.(a)
    Reference 15, Vol. 3, p. 999.Google Scholar
  62. (b).
    D. F. Shriver and K. H. Whitmire in reference 15, Vol. 4, p. 262.Google Scholar
  63. 28.
    J. P. Collman, L S. Hegedus, J. R. Norton, and R. G. Finke, “Principles and Applications of Organo-transition Metal Chemistry,” p. 43, University Science Books, Mill Valley, CA, 1987.Google Scholar
  64. 29.
    Reference 15, Vol. 3, p.990.Google Scholar
  65. 30.
    G. M. Sheldrick, “SHELX’76 Program for Crystal Structure Determinations,” Cambridge University, Cambridge, England, 1976.Google Scholar
  66. 31.
    D. T. Cramer and J. B. Mann, Acta Crystallogr., A24, 321 (1968).Google Scholar
  67. 32.
    R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).CrossRefGoogle Scholar
  68. 33.
    D. T. Cramer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).CrossRefGoogle Scholar
  69. 34.
    A. R. Spurr, J. Ultrastructure Research, 26, 31 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ayusman Sen
    • 1
  • Manish Nandi
    • 1
  • Jeanine A. Conklin
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations