Skip to main content

Electrochemical Reduction of PMDA-ODA and its Effect on Metal/Polyimide Interfacial Reliability

  • Chapter
Metallized Plastics 2

Abstract

Numerous polymers, including many polyimides, are known to exhibit reversible electrochemical redox behavior. This phenomenon has been observed for thermally imidized films in aqueous electrolytes, and for chemically and thermally cured polyimides in nonaqueous electrolytes. Here we report that even relatively thick chemically imidized polyimides exhibit reversible redox behavior in simple aqueous electrolytes. In addition, the effect of this electroactivity on metal to polyimide adhesion was investigated by forming metal electrodes on Kapton®’ polyimide film and applying a cathodic bias in aqueous electrolyte solutions. UV-visible electronic absorption spectroscopy, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Cyclic Voltammetry (CV) demonstrate that the species formed at the solvent saturated polyimide/metal interface is the singly reduced or “radical anion” form of Kapton®’ paired with a charge-balancing counterion. The rate of formation of the radical anion has been found to be consistent with calculated hydrated-cation radial size and measured equivalent conductance data, relative cation acidity, and solution pH. When alkali metal counterions are used, reversible redox behavior of PMDA-ODA is preserved with polyimide mediated electron transfer into the bulk polyimide, or to oxygen (in O2 containing solutions), possible. Electron transfer to oxygen is believed to result in a locally high concentration of hydroxide anions at the metal/polyimide interface. Temperature and humidity exposure accelerates the rate of polyimide hydrolysis by this nucleophile, resulting in substantially increased rates of metal to polyimide adhesion degradation. When counterion cations are used, which are more acidic in nature, the stability of the radical anion and cation complex is increased, effectively slowing the rate of polyimide mediated electron transfer. At pH below 4.5 a highly stable covalent radical-alcohol complex is suggested to result from direct protonation of the radical anion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kapton® and Pyralin® are registered trademarks of of E.I. Du Pont de Nemours & Co., Thermid® is a registered trademark of the National Starch and Chemical Corp., XU-218® is a registered trademark of Ciba-Geigy Corp., and Sure-Seal™ is a trademark of Aldrich Chemical Co.

    Google Scholar 

  2. For a review, see K.L. Mittal, Editor, “Polyimides: Synthesis, Characterization, and Applications,” Vols. 1 and 2, Plenum Press, New York, (1984).

    Google Scholar 

  3. “Polymer Materials For Electronic Applications,” ACS Symposium Series No. 184, Amer. Chem. Soc., Washington, D.C. (1982).

    Google Scholar 

  4. R.C. Haushalter and L.J. Krause, Thin Solid Films, 102, 161 (1983)

    Article  CAS  Google Scholar 

  5. 2, pp. 735-750.

    Google Scholar 

  6. S. Mazur, P.S. Lugg, and C. Yarnitzky, J. Electrochem. Soc, 134, 346 (1987).

    Article  CAS  Google Scholar 

  7. L.J. Krause and J.L. Bales, J. Electrochem. Soc, 135, 1137 (1988).

    Article  CAS  Google Scholar 

  8. L.J. Krause, P.S. Lugg, and T.A. Speckhard, J. Electrochem. Soc, 136(5), 1379 (1989).

    Article  CAS  Google Scholar 

  9. A. Viehbeck, C.A. Kovac, S.L. Buchwalter, M.J. Goldberg, and S.I. Tisdale, in “Metallization of Polymers,” E. Sacher, J.-J. Pireaux, S.P. Kowalczyk editors, pp. 394-414, ACS Symposium Series no. 440, American Chemical Society (1990).

    Google Scholar 

  10. A. Viehbeck, M.J. Goldberg, and C.A. Kovac, J. Electrochem. Soc, 137, 1460 (1990).

    Article  CAS  Google Scholar 

  11. Condensation of the aromatic anhydride and n-butylamine in N,N-dimethylacetamide.

    Google Scholar 

  12. Olin-Hunt High Speed Circuit Etch, Cat no. 838383, W. Patterson, NJ.

    Google Scholar 

  13. R. Paonessa, unpublished results, IBM Endicott (1989).

    Google Scholar 

  14. Du Pont Kapton® Bulletin # E-41395.

    Google Scholar 

  15. K. Itaya, T. Ataka, and S. Toshima, J. Am. Chem. Soc., 104, 4767 (1982).

    Article  CAS  Google Scholar 

  16. R.C. Weast, editor, “Handbook of Physics and Chemistry,” 63rd addition, CRC Press, Boca Raton, Florida, 1982-83.

    Google Scholar 

  17. D.T. Sawyer, D.T. Richens, E.J. Nairni, and M.D. Stallings, Dey. Biochem., 11(A), 1 (1980).

    Google Scholar 

  18. D.T. Sawyer, M.J. Gibian, M.M. Morrison, and E.T. Seo, J. Am. Chem. Soc, 100, 627 (1978).

    Article  CAS  Google Scholar 

  19. J.A. Fec and J.S. Valentine, in “Superoxide and Superoxide Dismutase,” Michelson, McCord, and Fridovich Editors, pp. 16–60, Academic Press, New York, (1977).

    Google Scholar 

  20. B.H. Bielski, J. Photochem. Photobiol., 28, 645 (1978).

    Article  CAS  Google Scholar 

  21. Y.A. Han, D. Meisel, and G. Czapski, Israel J. Chem., 12, 891 (1974).

    Google Scholar 

  22. D. Behan, G. Czapski, J. Rabani, L.M. Dorfman, and H.A. Schwartz, J. Phys. Chem., 74, 3209 (1970).

    Article  Google Scholar 

  23. D.T. Sawyer and J.S. Valentine, Acc Chem. Res., 14, 393 (1981).

    Article  CAS  Google Scholar 

  24. G.F. Carter, J.L. Margrove, and D.H. Templeton, Acta. Crystallogr., 5, 85 (1952).

    Article  Google Scholar 

  25. G. Czapski and L.M. Dorfman, J. Phys. Chem., 68(5), 1169 (1964).

    Article  Google Scholar 

  26. W.H. Reusch, “An Introduction to Organic Chemistry,” pp. 339–343, Holden-Day, San Franscisco, California (1977).

    Google Scholar 

  27. US Patent #4846929, July 11, 1989.

    Google Scholar 

  28. US Patent #4857143, August 15, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schadt, M.J., Viehbeck, A. (1991). Electrochemical Reduction of PMDA-ODA and its Effect on Metal/Polyimide Interfacial Reliability. In: Mittal, K.L. (eds) Metallized Plastics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0735-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0735-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0737-0

  • Online ISBN: 978-1-4899-0735-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics