Modification of Polymer Surfaces by Dual Frequency Plasma

  • J. E. Klemberg-Sapieha
  • L. Martinu
  • O. M. Küttel
  • M. R. Wertheimer


Several commercial polymers (polyethylene, polyimide, polytetrafluoroethylene, polyvinylchloride and polycarbonate) have been treated by low temperature glow discharge plasmas in various gases, namely N2, NH3, O2, Ar and CF4. These surface modifications were performed in “pure” microwave (MW, 2.45 GHz) or in combined microwave/radiofrequency (MW/RF, 2.45 GHz/13.56 MHz, “dual-frequency”) plasma. Plasma diagnostics using electrostatic probes has demonstrated intense surface bombardment by energetic ions in the MW/RF case. Important systematic changes in the surface composition (determined by XPS), water wettability (by contact angle goniometry), and adhesion of evaporated aluminum films were observed for different RF-induced substrate bias values, and for the different plasma gases. The modified surface-chemical structure is correlated with contact angle hysteresis of water drops; this helps to identify which surface characteristics are connected with the wettability and with adhesion properties, and how they are influenced by plasma-surface interactions. The contribution to the latter by VUV radiation from the plasma is also examined, as is “ageing” of the plasma treated surfaces.


Contact Angle Plasma Treatment Water Contact Angle Polymer Surface Water Wettability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.T. Clark, A. Dilks and D. Shuttleworth, in “Polymer Surfaces”, D.T. Clark and W.J. Feast, editors, p. 185, Wiley, New York, 1978.Google Scholar
  2. 2.
    E.M. Liston, J. Adhesion 30, 199 (1989).CrossRefGoogle Scholar
  3. 3.
    K.L. Mittal, J. Vac. Sci. Technol. 13, 19 (1976).CrossRefGoogle Scholar
  4. 4.
    J.M. Burkstrand, Appl. Phys. Lett. 50, 1152 (1978).Google Scholar
  5. 5.
    J.M. Burkstrand, J. Vac. Sci. Technol. 15, 223 (1978).CrossRefGoogle Scholar
  6. 6.
    J.J. Pireaux, C. Grégoire, M. Vermeersch, P.A. Thiry and R. Caudano, Surface Sci. 189/190, 903 (1987).CrossRefGoogle Scholar
  7. 7.
    L.J. Gerenser, J. Vac. Sci. Technol. A6, 2897 (1988).Google Scholar
  8. 8.
    E. Sacher, J.J. Pireaux and S. Kowalczyk, editors, “Metallization in Polymers”, A.C.S. Symp. Series 440, 1990 (in press).Google Scholar
  9. 9.
    K.L. Mittal and J.R. Susko, editors., “Metallized Plastics 1: Fundamental and Applied Aspects”, Plenum Press, New York, 1989.Google Scholar
  10. 10.
    M.R. Wertheimer and M. Moisan, J. Vac. Sci. Technol. A3, 2643 (1985).Google Scholar
  11. 11.
    M. Moisan, C. Barbeau, R. Claude, CM. Ferreira, J. Margot-Chaker, J. Paraszczak, A.B. Sa, G. Sauvé, and M.R. Wertheimer, J. Vac. Sci. Technol., accepted for publication.Google Scholar
  12. 12.
    M.R. Wertheimer, M. Moisan, J.E. Klemberg-Sapieha, and R. Claude, Pure Appl. Chem. 60, 815 (1988).CrossRefGoogle Scholar
  13. 13.
    M. Neusch and J. Kieser, Vacuum 34, 959 (1984).CrossRefGoogle Scholar
  14. 14.
    R. Foerch, N.S. Mclntyre, R.N.S. Sodhi and D.H. Hunter, J. Appl. Polym. Sci. 40, 1903 (1990).CrossRefGoogle Scholar
  15. 15.
    B. Chapman, “Glow Discharge Processes”, Wiley, New York, 1980.Google Scholar
  16. 16.
    H. Biederman and L. Martinu, in “Plasma Deposition, Treatment and Etching of Polymers”, R. d’Agostino, editor, Academic Press, New York, 1990.Google Scholar
  17. 17.
    L. Martinu, J.E. Klemberg-Sapieha, and M.R. Wertheimer, Appl. Phys. Lett. 54, 2645 (1989).CrossRefGoogle Scholar
  18. 18.
    M.H. Bernier, J.E. Klemberg-Sapieha, L. Martinu and M.R. Wertheimer, in ref. 8.Google Scholar
  19. 19.
    J.E. Klemberg-Sapieha, L. Martinu, O.M. Kiittel and M.R. Wertheimer, J. Vac. Sci. Technol., submitted.Google Scholar
  20. 20.
    O.M. Küttel, J.E. Klemberg-Sapieha, L. Martinu and M.R. Wertheimer, Thin Solid Films 193, (1990) in press.Google Scholar
  21. 21.
    J. Strong, Rev. Sci. Instrum. 6, 97 (1945).CrossRefGoogle Scholar
  22. 22.
    R.E. Johnson and R.H. Dettre, J. Phys. Chem. 68, 1744 (1964).CrossRefGoogle Scholar
  23. 23.
    K.L. Mittal, in “Adhesion Science and Technology”, L.-H. Lee, editor, Part A, pp. 129–168, Plenum Press, New York, 1975.CrossRefGoogle Scholar
  24. 24.
    F.M. Fowkes, J. Adhesion Sci. Technol. 1, 7 (1987).CrossRefGoogle Scholar
  25. 25.
    L. Cop, J. Jordaan, H.P. Schreiber and M.R. Wertheimer, US Pat. 4, 744,860 (1988), U.K. Pat. 2, 188,947 (1987).Google Scholar
  26. 26.
    F. Garbassi, M. Morra, and E. Occhiello, these proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. E. Klemberg-Sapieha
    • 1
  • L. Martinu
    • 1
  • O. M. Küttel
    • 1
  • M. R. Wertheimer
    • 1
  1. 1.“Groupe des Couches Minces” and Department of Engineering PhysicsEcole PolytechniqueMontréalCanada

Personalised recommendations