Study of Titanium/Polyimide Interface in a Reducing Environment

  • Kabul S. Sengupta
  • Howard K. Birnbaum


The system investigated was Au/Cu/Ti/Polyimide. Heat treatment of these films in reducing ambient introduced a host of problems resulting in film failure. SIMS depth profiles were determined for samples annealed in hydrogen (an essential component of forming gas), at different concentrations and temperatures. It was observed that the hydrogen segregates at the diffusion barrier (Ti), and causes delamination under certain conditions. SIMS, Auger, XPS and X-ray diffraction techniques were used to characterize the interface and to locate the delamination plane in the metal/polymer system.


Auger Electron Spectroscopy Titanium Layer Auger Electron Spectroscopy Depth Profile Auger Electron Spectroscopy Spectrum Carbonaceous Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    R. J. Jensen, J. P. Cummings, and H. Vora, IEEE Trans., CHMT-7, 384 (1984).Google Scholar
  2. 2).
    D. Gupta, Mater. Res. Soc. Symp. Proc, 47, 11 (1985).CrossRefGoogle Scholar
  3. 3).
    R. M. Tromp, F. K. LeGoues, and P. S. Ho, J. Vac. Sci. Tech., A3(3), 782 (1985).Google Scholar
  4. 4).
    Y. H. Kim, G. F. Walker, J. Kim, and J. Park, J. Adhesion Sci. Technol., 1, 331 (1987).CrossRefGoogle Scholar
  5. 5).
    R. C. White, R. Haight, B.D. Silvermann, and P. S. Ho, Appl. Phys. Lett., 51(7), 481 (1987).CrossRefGoogle Scholar
  6. 6).
    F. S. Ohuchi and S. Freilich, J. Vac. Sci. Tech., A6(3), 1004 (1988).Google Scholar
  7. 7).
    P. N. Sanda, J. W. Bartha, J. G. Clabes, J. L. Jordan, C. Feger, B. D. Silvermann, and P. S. Ho, J. Vac. Sci. Tech., A4(3), 1035 (1986).Google Scholar
  8. 8).
    N. J. Chou, D. W. Dong, J. Kim, and A. C. Liu, J. Electrochem. Soc., 131, 2335 (1984).CrossRefGoogle Scholar
  9. 9).
    F. S. Ohuchi and S. C. Freilich, J. Vac. Sci. Tech., A4(3), 1039 (1986).Google Scholar
  10. 10).
    M. J. Goldberg, J. G. Clabes, and C. A. Kovac, J. Vac. Sci. Tech., A6(3), 991 (1988).Google Scholar
  11. 11).
    B. Ladna, C. M. Loxton, and H. K. Birnbaum, Acta Metallurgica, 34, 899 (1986).CrossRefGoogle Scholar
  12. 12).
    A. McQuillan, Proc. Roy. Soc. London, Ser. A, 204, 309 (1950).CrossRefGoogle Scholar
  13. 13).
    W. Pardee and N. Paton, Metall. Trans., 11A, 1391 (1980).Google Scholar
  14. 14).
    Z. M. Turovtseva and L. L. Kunin, “Analysis of Gases in Metals”, Consultants Bureau, New York, 1971.Google Scholar
  15. 15).
    C. N. Panagopoulous, J. Less Common Metals, 134, 237 (1984).CrossRefGoogle Scholar
  16. 16).
    A. Wilson, in “Polyimides: Synthesis, Characterization and Applications”, K.L. Mittal, editor, vol. 2, p.715, Plenum Press, New York, 1984.Google Scholar
  17. 17).
    P. Bodo and J. E. Sundgren, J. Vac. Sci. Tech., A6(4), 2396 (1988).Google Scholar
  18. 18).
    R. G. Nuzzo, Y. H. Wong, and G. P. Schwartz, Langmuir, 3, 1136 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kabul S. Sengupta
    • 1
  • Howard K. Birnbaum
    • 1
  1. 1.Department of Materials Science and Engineering and Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations