Advertisement

Electroplating of Polymers, Gas Permeability and Adhesion of the Composite Materials

  • Jürgen Springer
  • Gisela Schammler

Abstract

Various homo- and copolymers have been investigated to understand the influences of the polymer morphology on gas permeability and on adhesion of the polymer to an electrolessly plated metal layer. Surface modifications developed to improve adhesion have influence on the wetting properties of the polymer. Wetting phenomena were utilized to characterize the surface and the interface. Among the possible bonding mechanisms (chemical, mechanical, wetting, diffusion and electrostatic forces), wetting plays a dominant role, and we found a good correlation between adhesion and interfacial free energy.

The homopolymers used in our study were semi-crystalline. Here the influence of the degree of crystallization, the molecular flexibility in the vicinity of the glass-transition temperature, and the orientation of the chain molecules on the permeability was investigated. The copolymers tested were multiphase systems, for example, acrylonitrile-butadiene-styrene (ABS) resin, or styrene-butadiene (SB) resin.

The gas permeability through a metal-polymer composite does not only depend on the thickness of the metal layer but also on its structure.

Keywords

Metal Layer Permeability Coefficient Chromic Acid Electroless Nickel Peel Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rathmann, Chem. unserer Zeit 15, 201 (1981).CrossRefGoogle Scholar
  2. 2.
    R. Weiner, “Kunststoff-Galvanisierung”, Eugen G. Leuze Verlag, Saulgau, Germany (1973).Google Scholar
  3. 3.
    Stromlose Beschichtung von Metall, Kunstoff, Glas und Keramik, Berichtsband über das 10. Ulmer Gespräch, Eugen G. Leuze Verlag, Saulgau, Germany (1989).Google Scholar
  4. 4.
    T.V. Naylor in: G. Allen, J.C. Berington (Ed.) “Comprehensive Polymer Science”, Vol. 2, pp. 643–667, Pergamon Press, Oxford (1989).CrossRefGoogle Scholar
  5. 5.
    L. Phan Thuy and J. Springer, Colloid Polym. Sci. 266, 614 (1988).CrossRefGoogle Scholar
  6. 6.
    D. Schultze, private communication, TU Berlin, April 1990.Google Scholar
  7. 7.
    D.R. Paul, Ber. Bunsenges. Phys. Chem. 83, 294 (1979) and references therein.CrossRefGoogle Scholar
  8. 8.
    A.S. Michaels and H.J. Bixler, J. Polym. Sci. 50, 393 (1961) and references therein.CrossRefGoogle Scholar
  9. 9.
    L. Phan Thuy, Ph.D Thesis, Technical university of Berlin, Berlin, 1985, D 83.Google Scholar
  10. 10.
    A. Ferdinand, Ph.D Thesis, Technical University of Berlin, Berlin, 1986, D 83.Google Scholar
  11. 11.
    R. Sezi and J. Springer, Colloid Polym. Sci. 252, 1170 (1981).CrossRefGoogle Scholar
  12. 12.
    L. Phan Thuy, A. Lukaschov and J. Springer, Colloid Polym. Sci. 261, 973 (1983).CrossRefGoogle Scholar
  13. 13.
    Forschungsbericht ERP 2500/2570, Senator für Wirtschaft, Berlin (1985/1989).Google Scholar
  14. 14.
    A. Ferdinand and J. Springer, Progr. Colloid Polym. Sci. 77, 227 (1988).CrossRefGoogle Scholar
  15. 15.
    A. Ferdinand and J. Springer, Colloid Polym. Sci. 267, 1057 (1989).CrossRefGoogle Scholar
  16. 16.
    F.J. Meyer in: H.F. Mark, N.M. Bikales, Ch.G. Overberger, G. Menges (Ed.) “Encyclopedia of Polymer Science and Engineering”, Vol. 1, 2nd Ed., pp, 476–546, John Wiley & Sons, New York (1985).Google Scholar
  17. 17.
    K.W. Allen, J. Adhesion 21, 261 (1987).CrossRefGoogle Scholar
  18. 18.
    S. Wu, “Polymer Interface and Adhesion”, Marcel Dekker, New York (1982).Google Scholar
  19. 19.
    A.J. Kinloch, J. Mater. Sci. 15, 2141 (1980).CrossRefGoogle Scholar
  20. 20.
    K.L. Mittal, J. Vae. Sci. Technol. 13, 19 (1976).CrossRefGoogle Scholar
  21. 21.
    J. Springer, K. Sirinyan and R. Sezi, Angew. Makromol. Chem. 89, 103 (1980).CrossRefGoogle Scholar
  22. 22.
    J. Springer, K. Sirinyan and R. Sezi, Angew. Makromol. Chem. 89, 81 (1980).CrossRefGoogle Scholar
  23. 23.
    J. Springer, F. Förster, R. Sezi and K. Sirinyan, Angew. Makromol. Chem. 112, 35 (1983).CrossRefGoogle Scholar
  24. 24.
    J. Springer, R. Sezi, K. Sirinyan and W. Weigelt, Angew. Makromol. Chem. 89, 91 (1980).CrossRefGoogle Scholar
  25. 25.
    U. Zabach, F. Förster and J. Springer, Angew. Makromol. Chem. 116, 41 (1983).CrossRefGoogle Scholar
  26. 26.
    J. Springer, F. Förster and M. Uzman, Angew. Makromol. Chem. 122, 67 (1984).CrossRefGoogle Scholar
  27. 27.
    F. Förster, Ph.D Thesis, Technical University of Berlin, Berlin, 1985, D 83.Google Scholar
  28. 28.
    J. Springer and H. Brito, J. Appl. Polym. Sci. 24, 329 (1979).CrossRefGoogle Scholar
  29. 29.
    J. Springer, K. Sirinyan, W. Vogel and H. Brito, Angew. Makromol. Chem. 104, 89 (1982).CrossRefGoogle Scholar
  30. 30.
    R. Sezi, Ph.D Thesis, Technical University of Berlin, Berlin, 1980, D 83.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jürgen Springer
    • 1
  • Gisela Schammler
    • 1
  1. 1.Institut für Technische Chemie Fachgebiet Makromolekulare ChemieTechnical University of BerlinBerlin 12Germany

Personalised recommendations