XPS-Study of Metal-Polymer Interfaces After Polymer Surface Treatment by Ion and Plasma Techniques

  • S. Nowak
  • R. Mauron
  • G. Dietler
  • L. Schlapbach


A study of the effects of surface treatment of polypropylene on the deposition of thin metal films is presented. The polypropylene samples were treated in a low-pressure air plasma in one case and sputtered by argon ions in the other case. XPS was used to detect compositional surface modifications. Plasma treatment leads to surface oxidation, whereas the sputtering results in oxygen-free surfaces for in-situ analysis. After surface treatment, thin films of Mg, Ca and Ce were deposited. Depending on the surface treatment, we find indications for different bonding mechanisms and very different sticking probabilities. For the case of oxidized surfaces, the formation of a metal-oxygen-polymer complex is anticipated, whereas for oxygen-free surfaces a metal-carbon bond is likely to be formed.


Surface Treatment Plasma Treatment Polymer Surface Copper Foil Bonding Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Mittal and J.R. Susko, Editors, “Metallized Plastics 1: Fundamental and Applied Aspects”, Plenum Press, New York, 1989.Google Scholar
  2. 2.
    D.M. Brewis and D. Briggs, Polymer 22, 7 (1981).CrossRefGoogle Scholar
  3. 3.
    L.J. Gerenser, J. Adhesion Sci. Tech. 1, 303 (1987).CrossRefGoogle Scholar
  4. 4.
    B.J. Bachman and M.J. Vasile, J. Vac. Sci. Technol. A7, 2709 (1989).Google Scholar
  5. 5.
    E.M. Liston, J. Adhesion 30, 199 (1989).CrossRefGoogle Scholar
  6. 6.
    J.M. Burkstrand, J. Appl. Phys. 52, 4795 (1981).CrossRefGoogle Scholar
  7. 7.
    N.J. Chou and C.H. Tang, J. Vac. Sci. Technol A2, 751 (1984).Google Scholar
  8. 8.
    J.L. Jordan, C.A. Kovac, J.F. Morar and R.A. Pollak, Phys. Rev. B 36, 1369 (1987).CrossRefGoogle Scholar
  9. 9.
    J.G. Clabes, J. Vac. Sci. Technol A6, 2887 (1988).Google Scholar
  10. 10.
    L.J. Gerenser, J. Vac. Sei.Technol A6, 2897 (1988).CrossRefGoogle Scholar
  11. 11.
    P. Bodö and J.-E. Sundgren, J. Appl. Phys. 60, 1161 (1986).CrossRefGoogle Scholar
  12. 12.
    S. Nowak, H.-P. Haerri, L. Schlapbach and J. Vogt, Surface Interface Anal. 16, 418 (1990).CrossRefGoogle Scholar
  13. 13.
    G. Praline, B.E. Koel, R.L. Hance, H.-I. Lee and J.M. White, J. Electron Spectr. Rel. Phen. 21, 17 (1980).CrossRefGoogle Scholar
  14. 14.
    O. Gunnarsson and K. Schoenhammer, Phys. Rev. B 28, 4315 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • S. Nowak
    • 1
  • R. Mauron
    • 1
  • G. Dietler
    • 1
  • L. Schlapbach
    • 1
  1. 1.Physics DepartmentUniversity of FribourgFribourgSwitzerland

Personalised recommendations