Photoelectron Spectroscopy Model Study of the Interface Between Polyimide and Copper

  • P. Bodö
  • K. Uvdal
  • W. R. Salaneck

Abstract

Three different model molecules, representative of selected parts of the polyimide monomer unit, phthalimide (PIM), methyl-phthalimide (MPIM), and benzene-phthalimide (BPIM), were deposited on polycrystalline copper in ultra high vacuum. Both thin films and stable adsorbates of these molecules were studied by means of angle-dependent X-ray photoelectron spectroscopy, XPS(θ). The interaction with the copper surface and the orientation of adsorbates appear to be very different for all three of the model molecules examined. PIM shows a preferential orientation and a pronounced interaction with the Cu surface via the nitrogen atom. MPIM forms a very stable adsorbate with an estimated thickness of 18 Å. The BPIM adsorbate decomposes on the Cu surface, which results in a large loss of nitrogen.

Keywords

Carbonyl Carbon Copper Substrate Model Molecule Polyimide Film Copper Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, K.L. Mittal, Editor, “Polyimides: Synthesis, Characterization and Applications,” Vols. 1 and 2, Plenum, New York, 1984.Google Scholar
  2. 2.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Heden, K. Hamrin, V. Gelius, T. Bergmark, L.O. Verme, R. Manne, and Y. Baer, “ESCA Applied to Free Molecules,” North-Holland, Amsterdam, 1969.Google Scholar
  3. 3.
    P.S. Ho, P.O. Hahn, J.W. Bartha, G.W. Rubloff, F.K. LeGoues, and B.D. Silverman, J. Vac. Sci. Technol. A3, 739 (1985).Google Scholar
  4. 4.
    J.L. Jordan, C.A. Kovac, J.F. Morar, and R.A. Pollak, Phys.Rev. B, 36, 1369 (1987).CrossRefGoogle Scholar
  5. 5.
    P. Bodö and J.-E. Sundgren, J. Vac. Sci. Technol. A6, 2396 (1988).Google Scholar
  6. 6.
    F.S. Ohuchi and S.C. Freilich, J. Vac. Sci. Technol. A4, 1039 (1986).Google Scholar
  7. 7.
    P. Bodö and J.-E. Sundgren, J. Appl. Phys. 60, 1161 (1986).CrossRefGoogle Scholar
  8. 8.
    J.R. Salem, F.O. Sequeda, J. Duran, and W.Y. Lee, and R.M. Yang, J. Vac. Sci. Technol. A4, 369 (1986).Google Scholar
  9. 9.
    M. Grunze and R.N. Lamb, Chem. Phys. Lett. 133, 283 (1987).CrossRefGoogle Scholar
  10. 10.
    S.P. Kowalczyk and J.L. Jordan-Sweet, Chem. Mater. 1, 592 (1989).CrossRefGoogle Scholar
  11. 11.
    W.R. Salaneck, S. Stafström, J.L. Brédas, S. Andersson, P. Bodö, S.P. Kowalczyk, and J.J. Ritsko, J. Vac. Sci. Technol. A6, 3134 (1988).Google Scholar
  12. 12.
    P. Bodö, K. Uvdal, S. Stafström, and W.R. Salaneck, in “Metallization of Polymers,” E. Sacher, J.-J. Pireaux, and S.P. Kowalczyk, Editors, ACS Symposium series 440, chapt. 24, 1990.Google Scholar
  13. 13.
    S. Stafström, P. Bodö, W.R. Salaneck, and J.L. Brédas, in “Metallization of Polymers,” E. Sacher, J.-J. Pireaux, and S.P. Kowalczyk, Editors, ACS Symposium series 440, chapt. 23, 1990.Google Scholar
  14. 14.
    D.T. Clark, A. Dilks, and D. Shuttleworth, J. Electron Spectrosc. Rel. Phenom. 14, 247 (1978).CrossRefGoogle Scholar
  15. 15.
    W.R. Salaneck, R. Bergman, J.-E. Sundgren, A. Rockett, and J.E. Greene, Surface Sci. 198, 461 (1988).CrossRefGoogle Scholar
  16. 16.
    E.W. Salaneck, K. Uvdal, H. Elving, A. Askendal, and W.R. Salaneck, J. Colloid Interface Sci. 136, 440 (1990).CrossRefGoogle Scholar
  17. 17.
    K. Uvdal, P. Bodö, A. Ihs, B. Liedberg, and W.R. Salaneck, J. Colloid Interface Sci., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. Bodö
    • 1
  • K. Uvdal
    • 1
  • W. R. Salaneck
    • 1
  1. 1.Department of PhysicsLinköping UniversityLinköpingSweden

Personalised recommendations