Metallization of Plastics Via Low Temperature Arc Vapor Deposition (LTAVD)

  • K. R. Narendrnath
  • D. Mager


Low temperature arc vapor deposition (LTAVD) is a new addition to the field of cathodic arc plasma physical vapor deposition processes. Almost any metal, alloy, and intermetallic compound as well as many ceramics and fully reacted metals can be deposited utilizing LTAVD. With its ability to deposit coatings at room temperature, LTAVD has been utilized on a commercial basis in applying coatings to plastics to address electrical, optical, thermal, corrosion/oxidation, mechanical and decorative requirements. Plastics which have been coated include: polyimide, polyetherimide, fluorocarbons (Teflon), ABS, polyurethane, polypropylene, polyethylene, PVC, polyester, nylon, phenolics, polycarbonate, epoxies and other plastics and composites. LTAVD is a dry process and hence is environmentally safe.


Adhesion Strength Polyurethane Foam Coating Adhesion Tantalum Carbide Cathodic Erosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Mittal and J.R. Susko, Eds, “Metallized Plastics 1:Fundamental and Applied Aspects”, Plenum Press, New York 1989.Google Scholar
  2. 2.
    K.L. Mittal, J. Vac. Sci. Technol., 13(1), 19 (1976).CrossRefGoogle Scholar
  3. 3.
    H. Randhawa, Thin Solid Films, 167, 175 (1988).CrossRefGoogle Scholar
  4. 4.
    P.A. Lindfors, W.A. Mularie and G.K. Wehner, Surface Coatings Technol., 29, 275 (1986).CrossRefGoogle Scholar
  5. 5.
    E. Pinkhasov, U.S. Patent 4,351,855, Sept. 28, 1982.Google Scholar
  6. 6.
    J.E. Daalder, J. Phys. D:Appl. Phys., 10, 2225 (1977).CrossRefGoogle Scholar
  7. 7.
    C.W. Kimblin, J. Appl.Phys., 44, 3074 (1973).CrossRefGoogle Scholar
  8. 8.
    W.M. de Cock and J.E. Daalder, Proc. VII Intl. Symp. on Discharges and Electrical Insulation, Novosibirsk, USSR, 288-292 (1976).Google Scholar
  9. 9.
    H.C. Miller, J.Phys.D:Appl.Phys., 12, 1293 (1979).CrossRefGoogle Scholar
  10. 10.
    V.M. Lunev, V.D. Orcharvenko and V.M. Khoroshikh, Sov. Phys.-Tech. Phys. 22, 858 (1977).Google Scholar
  11. 11.
    K-H. Muller, J. Appl. Phys., 59(8), 2803 (1986).CrossRefGoogle Scholar
  12. 12.
    M.E. Harper, J.J. Cuomo and H.R. Kaufman, J. Vac.Sci. Technol., 21 737 (1982).CrossRefGoogle Scholar
  13. 13.
    P.J. Martin, D.R. McKenzie, R.P. Netterfield, P. Swift, S.W. Filipczuk, K-H. Muller, CG. Pacey and B. James, Thin Solid Films, 153, 91 (1987).CrossRefGoogle Scholar
  14. 14.
    H.K. Pulker, A.J. Perry and R. Berger, Surface Technol., 14 25 (1981).CrossRefGoogle Scholar
  15. 15.
    K.L. Mittal, J. Adhesion Sci. Technol., 1(3), 247 (1987).CrossRefGoogle Scholar
  16. 16.
    U. Helmersson, B.O. Johansson and J.-E. Sundgren, J. Vac. Sci. Technol., A3, 308, (1985).Google Scholar
  17. 17.
    K.L. Mittal, Electrocomp.Sci. Technol., 3, 21 (1976).CrossRefGoogle Scholar
  18. 18.
    P.A. Lindfors, Proc. Conf. on the Application of Ion plating and Implanation to Materials, 3–5 June, 1985, Atlanta, Georgia, R.F. Hochman, Ed. ASM, pl61.Google Scholar
  19. 19.
    I.I. Aksenov, V.A. Belous, V.G. Padalka, and V.M. Khoroshikh, Sov. J. Plasma Phys., 4, 425 (1978).Google Scholar
  20. 20.
    H. Randhawa, J. Vac. Sci. Technol., A7, 2346 (1989).Google Scholar
  21. 21.
    P.J. Martin, R.P. Netterfield and T.J. Kinder, paper presented at Intl. Conf. on Metallurgical Coatings/Intl. Conf. on Thin Films, San Diego, California, 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • K. R. Narendrnath
    • 1
  • D. Mager
    • 1
  1. 1.Vapor Technologies, Inc.BoulderUSA

Personalised recommendations