Pharmacological Profile, Pharmacokinetics and Biotransformation of the 5-Lipoxygenase Inhibitor FLM 5011

  • Tankred Schewe
  • Hartmut Kühn
  • Sylva Loose
  • Lothar Lücke
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The implication of lipoxygenase-mediated pathways of polyenoic fatty acid metabolism in inflammation, bronchial asthma and other diseases is today generally accepted. Nevertheless the precise role of lipoxygenase metabolites, in particular their interaction with other groups of inflammatory mediators, is yet far from clear. Specific inhibitors of lipoxygenases are valuable tools to gain deeper insight into the biological role of lipoxygenases and their reaction products.


Arachidonic Acid Hydroxamic Acid Urinary Metabolite Lipoxygenase Inhibitor Dibenzoyl Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Massicot, R. J. Soberman, N. R. Ackerman, D. Heavey, L. J. Roberts, and K. F. Austen, Workshop: Potential Therapeutic Uses of Leukotriene Generation and Function, Prostaglandins 32: 481 (1986).Google Scholar
  2. 2.
    A. Blackham, R. J. Griffiths, C. Hallam, J. Mann, P. D. Mitchell, A. A. Norris, and W. T. Simpson, FPL 62064, a Topically Active 5-Lipoxygenase/Cyclooxygenase Inhibitor, Agents and Actions 30: 432 (1990)CrossRefGoogle Scholar
  3. 3.
    H. Tsunoda, S. Katayama, Y. Sakuma, S. Tanaka, K. Tsukidate, S. Abe, I. Yamatsu, and K. Katayama, Effect of a Novel 5-Lipoxygenase Inhibitor, E6080 on Bronchospasm, Airway Cellular Infiltration and Leukotriene Production in Guinea Pigs, Prostaglandins Leukotrienes Essential Fatty Acids 42: 51 (1991).CrossRefGoogle Scholar
  4. E. Israel, R. Dermarkarian, M. Rosenberg, R. Sperling, G. Taylor, P. Rubin, and J. M. Drazen, The Effects of a 5-Lipoxygenase Inhibitor on Asthma Induced by Cold, Dry Air, N. Engl. J. Med. 323:1740 (1990)PubMedCrossRefGoogle Scholar
  5. R. A. Hahn, B. R. MacDonald, P. J. Simpson, L. Wang, R. D. Towner, P. P. K. Ho, R. M. Goodwin, A. P. Breau, T. Suarez, and E. D ‘Mihelich Characterization of LY233569 on 5-Lipoxygenase and Reperfusion Injury of Ischemic Myocardium, J. Pharmacol. Exp. Ther. 256:94 (1990)Google Scholar
  6. T. Schewe, S. M. Rapoport, and H. Kahn, Enzymology and Physiology of Reticulocyte Lipoxygenase: Comparison with Other Lipoxygenases, Adv. Enzymol. Rel. Areas Molec. Biol. 58:273 (1986).Google Scholar
  7. 7.
    S. N. Rapoport, T. Schewe, and B. J. Thiele, Maturational Breakdown of Mitochondria and Other Organelles in Reticulocytes, in: “Blood Cell Biochemistry”, J. H. Harris, ed., Plenum Press, New York (1990), Vol. 1, p. 151.Google Scholar
  8. N.-F. Henry, and E.-J. Nyns, Cyanide-Insensitive Respiration. An Alternative Nitochondrial Pathway, Sub.-Cell. Biochem. 4:1 (1975).Google Scholar
  9. 9.
    T. Schewe, H. Kahn, J. Beger, R. Grupe, S. M. Rapoport, H. J. Binte, and J. Slapke, 1-(2-Hydroxyaryl)alkane-1-one oximes - Procedure of Preparation and Use in Pharmaceutics, U.S.Patent 4, 816, 487 (1989).Google Scholar
  10. J. Slapke, G. Becher, T. Schewe, H. Kühn, W. Forster, and J. Winkler, A Test Hierarchy for Anti-Bronchoconstrictory Lipoxygenase Inhibitors: In Vitro and In Vivo Experimental Tests, Allergol. Immunopathol. 15:137 (1987).Google Scholar
  11. D. Noch, T. Schewe, P. Buntrock, and H. Kahn, Anti-Inflammatory and Antiproliferative Actions of FLM 5011, a Lipoxygenase Inhibitor, in a Wound Healing Model of the Rat, Theoret. Surgery 5:185 (1990).Google Scholar
  12. 12.
    S. Nadi, J. Giessler, R. Hirschelmann, G. Friedrich, and P. Braquet, Allergen-Induced Bronchospasm in Passively Sensitized Guinea Pigs: Influence of New Substances in Comparison to Reference Compounds, Agents and Actions 32 (1991) in press.CrossRefGoogle Scholar
  13. B. Rudas, Zur quantitativen Bestimmung von Granulationsgewebe in experimentell erzeugten Wunden, Drug. Res. 10:226 (1960).Google Scholar
  14. 14.
    T. Schewe, and H. Kühn, Do 15-Lipoxygenases have a Common Biological Role? Trends Biochem. Sci. (1991) in press.Google Scholar
  15. T. Ruzicka, and M. P. Printz, Arachidonic Acid Metabolism in Skin: A Review, Rev. Physiol. Biochem. Pharmacol. 100:121 (1984).PubMedGoogle Scholar
  16. 16.
    X. Liu, A. Tosaki, R. N. Engelman, and D. K. Das, Salicylic Acid Reduces Ventricular Dysfunction and Arrhythmias by Scavenging Hydroxyl Radicals, in: Abstracts of the 4th Interscience World Conference on Inflammation - Antirheumatics, Analgesics, Immunomodulators, Geneva, Switzerland, 15–18 April 1991, Abstr. No. 304.Google Scholar
  17. 17.
    W. Geissler, A. Forster, T. Schewe, S. N. Rapoport, J. Slapke, R. Meyer, P. Romaniuk, and I. Reisinger, Antiinflammatory Effect of a Lipoxygenase Inhibitor (FLN 5011) in Severe Active Nyocarditis, Biomed. Biochim. Acta 47:S311 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Tankred Schewe
    • 1
  • Hartmut Kühn
    • 1
  • Sylva Loose
    • 1
  • Lothar Lücke
    • 2
  1. 1.Institute of BiochemistryHumboldt University, Medical School (Charité)BerlinGermany
  2. 2.Chemische und Pharmazeutische Fabriken Fahlberg-List GmbHMagdeburgGermany

Personalised recommendations