Lipid Bodies: Structurally Distinct, Non-Membranous Intracellular Sites of Eicosanoid Formation

  • Peter F. Weller
  • Sandra W. Ryeom
  • Ann M. Dvorak
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Lipid bodies are non-membrane bound cytoplasmic inclusions characteristically more abundant in cells associated with inflammatory reactions. Our investigations of cytoplasmic lipid bodies, which have studied aspects of lipid body occurrence, formation, and protein and lipid composition, indicate that lipid bodies have novel functions as specialized intracellular domains involved in the formation of eicosanoids by cells engaged in inflammatory reactions.


Lipid Body Calcium Ionophore A23187 Eicosenoic Acid Paracrine Mediator Eicosadienoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Galli, A. M. Dvorak, S. P. Peters, E. S. Schulman, D. W. MacGlashan Jr., T. Isomura, K. Pyne, V. S. Harvey, I. Hammel, L. M. Lichtenstein, and H. F. Dvorak, Lipid bodies: Widely distributed cytoplasmic structures that represent preferential non-membrane repositories of exogenous [3H]-arachidonic acid incorporated by mast cells, macrophages and other cell types, in: “Prostaglandins, leukotrienes, and lipoxins,” J. M. Bailey, ed., Plenum Publishing Co., New York (1985).Google Scholar
  2. 2.
    P. F. Weller, S. W. Ryeom, S. T. Picard, S. J. Ackerman, and A. M. Dvorak, Cytoplasmic lipid bodies of neutrophils: Formation induced by cis-unsaturated fatty acids and mediated by protein kinase C, J. Cell Biol. 113: 137 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    P. F. Weller, S. J. Ackerman, A. Nicholson-Weller, and A. M. Dvorak, Cytoplasmic lipid bodies of human neutrophilic leukocytes, Am,J. Pathol. 135: 947 (1989).Google Scholar
  4. 4.
    P. F. Weller and A. M. Dvorak, Arachidonic acid incorporation by cytoplasmic lipid bodies of human eosinophils, Blood. 65: 1269 (1985).PubMedGoogle Scholar
  5. 5.
    A. M. Dvorak, H. F. Dvorak, S. P. Peters, E. S. Schulman, D. W. MacGlashan Jr., K. Pyne, V. S. Harvey, S. J. Galli, and L. M. Lichtenstein, Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells, J. Immunol. 131: 2965 (1983).PubMedGoogle Scholar
  6. 6.
    A. Coimbra and A. Lopes-Vaz, The presence of lipid droplets and the absence of stable sudanophilia in osmium-fixed human leukocytes, J. Histochem Cytochem. 19: 551 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    M. C. Willingham, and I. Pastan, “An Atlas of Immunofluorescence in Cultured Cells,” Academic Press, New York (1985).Google Scholar
  8. 8.
    P. Greenspan, E. P. Mayer, and S. D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets J. Cell Biol. 100: 965 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    J. M. Robinson, M. L. Karnovsky, and M. J. Karnovsky, Glycogen accumulation in polymorphonuclear leukocytes, and other intracellular alterations that occur during inflammation, D Cell Blot. 95: 933 (1982).Google Scholar
  10. 10.
    A. M. Dvorak, I. Hammel, E. S. Schulman, S. P. Peters, D. W. MacGlashan Jr., R. P. Schleimer, H. H. Newball, K. Pyne, H. F. Dvorak, L. M. Lichtenstein, and S. J. Galli, Differences in the behavior of cytoplasmic granules and lipid bodies during human lung mast cell degranulation, J. Cell Biol. 99: 1678 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    P. F. Weller, R. A. Monahan-Earley, H. F. Dvorak, and A. M. Dvorak, Cytoplasmic lipid bodies of human eosinophils: subcellular isolation and analysis of arachidonate incorporation, Am,J. Pathol. 138: 141 (1991).Google Scholar
  12. 12.
    R. F. Irvine, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem,J. 204: 3 (1982).Google Scholar
  13. 13.
    T. E. Rollins and W. L. Smith, Subcellular localization of prostaglandin-forming cyclooxygenase in Swiss mouse 3T3 fibroblasts by electron microscopic immunocytochemistry, J Biol Chem. 255: 4872 (1980).PubMedGoogle Scholar
  14. 14.
    W. L. Smith, Prostaglandin biosynthesis and its compartmentalization in vascular smooth muscle and endothelial cells, Ann Rev Physiol. 48: 251 (1986).CrossRefGoogle Scholar
  15. 15.
    W. L. Smith, T. E. Rollins, and D. L. DeWitt, Subcellular localization of prostaglandin forming enzymes using conventional and monoclonal antibodies, jn: “Progress in Lipid Research,” R. T. Holman, ed., Pergamon, Oxford (1981).Google Scholar
  16. 16.
    J. P. Merlie, D. Fagan, J. Mudd, and P. Needleman, Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase), J. Biol Chem. 263: 3550 (1988).PubMedGoogle Scholar
  17. 17.
    D. L. DeWitt, and W. L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc Natl Acad ad USA. 85: 1412 (1988).CrossRefGoogle Scholar
  18. 18.
    A. M. Dvorak, R. A. Monahan-Earley, H. F. Dvorak, and S. J. Galli, Ultrastructural cytochemical and autoradiographic demonstration of nonspecific esterase(s) in guinea pig basophils, L Histochem Cytochem. 35: 351 (1987).CrossRefGoogle Scholar
  19. 19.
    R. A. Monahan-Earley, T. Isomura, R. I. Garcia, S. J. Galli, H. F. Dvorak, and A. M. Dvorak, Nonspecific esterase activity in Weibel-Palade bodies of cloned guinea pig aortic endothelial cells, Histochem Cytochem. 35: 531 (1987).CrossRefGoogle Scholar
  20. 20.
    A. M. Dvorak, S. J. Ackerman, and P. F. Weller, Subcellular morphology and biochemistry of eosinophils, in: “Blood cell biochemistry: Megakaryocytes, platelets, macrophages and eosinophils,” J. R. Harris, ed., Plenum Publishing, London (1990).Google Scholar
  21. 21.
    R. A. Monahan, H. F. Dvorak, and A. M. Dvorak, Ultrastructural localization of nonspecific esterase activity in guinea pig and human monocytes, macrophages, and lymphocytes, Blood. 58: 1089 (1981).PubMedGoogle Scholar
  22. 22.
    P. F. Weller and S. W. Ryeom, Prostaglandin formation at non-membrane sites of cytoplasmic lipid bodies, (submitted).Google Scholar
  23. 23.
    K. Comai, P. Prose, and S. J. Farber, Correlation of renal medullary prostaglandin content and renal interstitial cell lipid droplets, Prostaglandins. 6: 375 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    K. A. Haines, K. N. Giedd, A. M. Rich, H. M. Korchak, and G. Weissmann, The leukotriene B4 paradox: neutrophils can, but will not, respond to ligand-receptor interactions by forming leukotriene B4 or its omega-metabolites, Biochem,J. 241: 55 (1987).Google Scholar
  25. 25.
    S. A. Bauldry, R. L. Wykle, and D. A. Bass, Phospholipase A2 activation in human neutrophils. Differential actions of diacyiglycerols and alkylacylglycerols in priming cells for stimulation by N-formyl-met-leu-phe, J Biol Chem. 263: 16787 (1988).PubMedGoogle Scholar
  26. 26.
    M. Raulf, and W. König, Modulation of leukotriene release from human polymorphonuclear leucocytes by PMA and arachidonic acid, Immunology. 64: 51 (1988).PubMedGoogle Scholar
  27. 27.
    W. C. Liles, K. E. Meier, and W. R. Henderson, Phorbol myristate acetate and the calcium ionophore A23187 synergistically induce release of LTB4 by human neutrophils: involvement of protein kinase C activation in regulation of the 5-lipoxygenase pathway, J Immunol. 138: 3396 (1987).PubMedGoogle Scholar
  28. 28.
    M. Laposata, S. L. Kaiser, and A. M. Capriotti, Icosanoid production can be decreased without alterations in cellular arachidonate content or enzyme activities required for arachidonate release and icosanoid synthesis, J. B Chem. 263: 3266 (1988).Google Scholar
  29. 29.
    E. E. Schneeberger, R. D. Lynch, and R. P. Geyer, Formation and disappearance of triglyceride droplets in strain L fibroblasts, Ea Lell B. 69: 193 (1971).Google Scholar
  30. 30.
    C. D. Stubbs, W. M. Tsang, J. Belin, A. D. Smith, and S. M. Johnson, Incubation of exogenous fatty acids with lymphocytes. Changes in fatty acid composition and effects on the rotational relaxation time of 1,6-diphenyl-1,3,5hexatriene, Biochemistry. 19: 2756 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Peter F. Weller
    • 1
  • Sandra W. Ryeom
    • 1
  • Ann M. Dvorak
    • 1
  1. 1.Departments of Medicine and Pathology Beth Israel HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations