Lipoxygenase Metabolism in the Regulation of Hematopoiesis

  • Alan M. Miller
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

In the past 25 years our knowledge of the regulation of the proliferation and differentiation of the cells of the hematopoietic system have grown tremendously. The availability of specific hematopoietic growth factors and of in vitro clonal assays for hematopoietic progenitor cells has made it possible to closely study the interrelationship between cell and cytokine (1,2). This has led to the production of clinically useful recombinant human hematopoietic growth factors (3–6). Despite these rapid advances, as yet little is known about the events that occur in hematopoietic progenitors after they have been stimulated by their appropriate growth factors.

Keywords

Chronic Lymphocytic Leukemia Caffeic Acid Hematopoietic Growth Factor Lipoxygenase Pathway Lipoxygenase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Pluznik and L. Sachs: The cloning of normal “mast” cells in tissue culture. J Cell Comp Physiol 66: 319 (1965).CrossRefGoogle Scholar
  2. 2.
    T.R. Bradley and D. Metcalf: The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44: 287 (1966).PubMedCrossRefGoogle Scholar
  3. 3.
    J.E. Groopman, R.T. Mitsuyasu, M.J. DeLeo, D.H. Oette, and D.W. Golde: Effect of recombinant human granulocyte-macrophage colony stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med 317: 593 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Nemunaitis, J.W. Singer, C.D. Buckner, R. Hill, R. Storb, E.D. Thomas, and F.R. Appelbaum: Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies. Blood 72: 834 (1988).PubMedGoogle Scholar
  5. 5.
    K. S. Antman, J.D. Griffen, A. Elias, M.A. Solinski, L. Ryan, S.A. Cannistra, D. Oette, M. Whitley, E. Frei III, and L. Schnipper: Effect of recombinant human granulocyte-macrophage colony stimulating factor on chemotherapy-induced myelosuppression. N Engl J Med 319: 593 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    C.A. Seiff: Hematopoietic growth factors. J Clin Invest 79: 1549 (1987).CrossRefGoogle Scholar
  7. 7.
    V.A. Ziboh, A.M. Miller, M-C Wu, A.A. Yunis, J. Jimenez, and G. Wong: Induced release and metabolism of arachidonic acid from myeloid cells by purified colony-stimulating factor. J Cell Physiol 113: 67 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    A.M. Miller, V.A. Ziboh, and A.A. Yunis: Evidence for involvement of the lipoxygenase pathway in CSF-induced human and murine myeloid colony formation. In: Prostaglandins and Cancer: First International Conference. T.J. Fowles, R.S. Bockman, K.V. Honn, P. Ramwell, eds. New York: Alan J. Liss, Inc., 481–485 (1982).Google Scholar
  9. 9.
    H-E. Claesson, N. Dahlberg, and G. Gahrton: Stimulation of human myelopoiesis by leukotriene B4. Biochem Biophys Res Comm 131: 579 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    V.A. Ziboh, T. Wong, M-C. Wu, and A.A. Yunis: Modulation of colony stimulating factor-induced murine myeloid colony formation by s-peptidô-lipoxygenase products. Canc Res 46: 600 (1986).Google Scholar
  11. 11.
    D.S. Snyder and J.F. Desforges: Lipoxygenase metabolites of arachidonic acid modulate hematopoiesis. Blood 67: 1675 (1986).PubMedGoogle Scholar
  12. 12.
    A.M. Miller, R.S. Weiner, and V.A. Ziboh: Evidence for the role of leukotrienes C4 and D4 as essential intermediates in CSF stimulated human myeloid colony formation. Exp Hemat 14: 760 (1986).PubMedGoogle Scholar
  13. 13.
    C.S. Baxter and A.T. Lawrence: Specific inhibition of phorbol diester-induced granulocyte-macrophage progenitor cell (GM-CFU) differentiation by lipoxygenase inhibitors. Cancer Letters 37: 251 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    B.S. Beckman, M. Mason-Garcia, L. Nystuen, L. King and J.W. Fisher: The action of erythropoietin is mediated by lipoxygenase metabolites in murine fetal liver cells. Biochem Biophys Res Comm 147: 392 (1987).Google Scholar
  15. 15.
    B. Beckman and L. Nystuen: Comparative effects of inhibitors on arachidonic acid metabolism or erythropoiesis. Prostaglandins, Leukotrienes and Essential Fatty Acids 31: 23 (1988).CrossRefGoogle Scholar
  16. 16.
    Z. Estrov, D.S. Halperin, F. Coceani, and M.H. Freedman: Modulation of human marrow haematopoiesis by leucotrienes in vitro. Brit J Hemat 69: 321 (1988).CrossRefGoogle Scholar
  17. 17.
    S.J. Vore, T.E. Eling, R.M. Danilowicz, A.N. Tucker, and M.I. Luster: Regulation of murine hematopoiesis by arachidonic acid metabolites. Int J Immunopharmac 11: 435 (1989).CrossRefGoogle Scholar
  18. 18.
    J.I. Kurland, R.S. Bockman, H.E. Broxmeyer, and M.A.S. Moore: Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Science 199: 552 (1978).Google Scholar
  19. 19.
    J. Kurland and M.A.S. Moore: Modulation of hemopoiesis by prostaglandins. Exp Hemat 5: 357 (1977).PubMedGoogle Scholar
  20. 20.
    A.M. Miller, T.R. Russell, M.A. Gross, and A.A. Yunis: Modulation of granulopoiesis: opposing roles of prostaglandins F and E. J Lab Clin Med 92: 983 (1978).Google Scholar
  21. 21.
    C.A. Dahinden, J. Zingg, F.E. Maly, and A.L. deWeck: Leukotriene production in human neutrophiles primed by recombinant human granulocyte/macrophage colony-stimulating factor and stimulated with complement component C5A and FMLP as second signals. J Exp Med 167: 1281 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    J.F. DiPersio, P. Billing, R. Williams, and J.C. Casson: Human granulocyte-macrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acid release and leukotriene B4 synthesis. J Immunol 140: 4315 (1988).PubMedGoogle Scholar
  23. 23.
    S.R. McColl, E. Krump, P.H. Naccache, and P. Borgeat: Enhancement of human neutrophil leukotriene synthesis by human granulocyte-macrophage colony-stimulating factor. Agents and Actions 27: 465 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Tsukada, K. Nakashima, and S. Shirakawa: Arachidonate 5-lipoxygenase inhibitors show potent antiproliferative effects on human leukemia cell lines. Biochem Biophys Res Comm 140: 832 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Ondrey, J. Harris, and K.M. Anderson: Inhibition of U937 eicosanoid and DNA synthesis by 5,8,11,14-eicosatetraynoic acid, an inhibitor of arachidonic acid metabolism and its partial reversal by leukotriene C4. Canc Res 49: (1989).Google Scholar
  26. 26.
    A.M. Miller, M.K. Cullen, S.M. Kobb, and R.S. Weiner: Effects of lipoxygenase and glutathione pathway inhibitors on leukemic cell growth. J Lab Clin Med 113: 355 (1989).PubMedGoogle Scholar
  27. 27.
    D.S. Snyder, R. Castro and J.F. Desforges: Antiproliferative effects of lipoxygenase inhibitors on malignant human hematopoietic cell lines. Exp Hematol 17: 6 (1989).PubMedGoogle Scholar
  28. 28.
    D.S. Snyder: Antiproliferative effects of lipoxygenase inhibitors on human leukemia cells. Advances in Prostaglandin and Leukotriene Research 21: 921 (1990).Google Scholar
  29. 29.
    S.J. Collins, R.C. Gallo, and R.E. Gallagher: Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270: 347 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Ferrero and R. Giovanni: Human leukemic cell lines. Clinics in Haem 13: 461 (1984).Google Scholar
  31. 31.
    V.A. Ziboh, T. Wong, M-C Wu and A.A. Yunis: Lipoxygenation of arachidonic acid by differentiated and undifferentiated human promyelocytic leukemia cells. J Lab Clin Med 108: 161 (1988).Google Scholar
  32. 32.
    J.C. Anthes, R.W. Bryant, M.W. Musch, K. Ng, and M.I. Siegel: Calcium ionophore and chemotactic peptide stimulation of peptidoleukotriene synthesis in DMSO-differentiated HL-60 cells. Inflammation 10: 145 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    A.M. Miller, S.K. Kobb, R. McTiernan: Regulation of HL-60 differentiation by lipoxygenase pathway metabolites in vitro. Cancer Research 50: 7457 (1990).Google Scholar
  34. 34.
    G.K. Reid, S. Kargman, P.J. Vickers, J.A. Mancini, C. Leveille, D. Ethier, D.K. Miller, J.W. Gillard, R.A.F. Dixon and J.F. Evans: Correlation between expression of FLAP, 5-lipoxygenase and cellular leukotriene synthesis. J Biol Chem 265: 19818 (1990).PubMedGoogle Scholar
  35. 35.
    J.S. Bomalaski, B. Freundlich, S. Steiner and M.A. Clark: The role of fatty acid metabolites in the differentiation of the human monocyte-like cell line U937. J Leukocyte Biology 44: 51 (1988).Google Scholar
  36. 36.
    F.H. Valune, R. Obrist, N. Tarlin, and R.C. Bast, Jr: Enhanced arachidonic acid lipoxygenation by K562 cells stimulated with 12–0tetradecanoylphorbol-13-acetate. Cancer Research 43: 197 (1983).Google Scholar
  37. 37.
    S.S. Tate and A. Meister: ry-Glutamyl transpeptidase from the kidney, in: A. Meister (ed.) Methods in Enzymology 113:400 (1985).Google Scholar
  38. 38.
    R.D. Allison: Gamma-Glutamyl transpeptidase: Kinetics and mechanism. Methods in Enzymol 113: 419 (1985).CrossRefGoogle Scholar
  39. 39.
    M.E. Anderson, R.D. Allison, and A. Meister: Interconversion of leukotrienes are catalyzed by purified 1-glutamyl transpeptidase: Concominant formation of leukotriene D4 and ry-glutamyl amino acids. Proc Natl Acad Sci 79: 1088 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    A.M. Miller, R.S. Weiner, and V.A. Ziboh: Evidence for the role of leukotrienes C4 and D4 as essential intermediates in CSF stimulated human myeloid colony formation. Exp Hemat 14: 760 (1986).PubMedGoogle Scholar
  41. 41.
    D.G. Beer, K.A. Zweifel, D.P. Simpson, and H.C. Pitot: Specific gene expression during compensatory renal hypertrophy in the rat. J Cell Physiol 131: 29 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    D.D. Bankson, N. Rikfai, M.E. Williams, L.M. Silverman, and T.K. Gray: Biochemical effects of 17 beta-estradiol on UMR106 cells. Bone Miner 6: 55 (1989).PubMedCrossRefGoogle Scholar
  43. 43.
    M.S. Rao, M.R. Nemali, N. Usuda, D.G. Scardelli, T. Makino, H.C. Pitot and J.K. Reddy: Lack of expression of glutathione-S-transferase P, y-glutamyl transpeptidase, and a-fetoprotein messenger RNAs in liver tumors induced by peroxisome proliferators. Cancer Research 48: 4919 (1988).PubMedGoogle Scholar
  44. 44.
    M.R. Khalaf and R.F.J. Hayhoe: Cytochemistry of y-glutamyltransferase in haemic cells and malignancies. Histochem J 19: 385 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    T.J. Woodlock, R. Brown, M. Mani, L. Pompeo, H. Hoffman, G.B. Segel, and R. Silber: Decreased L system amino acid transport and decreased gamma-glutamyl transpeptidase are independent processes in chronic lymphocytic leukemia B-lymphocytes. J Cell Physiol 145: 217 (1990).PubMedCrossRefGoogle Scholar
  46. 46.
    Y. Takami, M. Chiba, and M. Takashashi: Expression of gamma-glutamyl transpeptidase related to tumor differentiation on squamous cell carcinoma of human skin. Nippon Hifuka Gakkai Zasshi 100: 749 (1990).PubMedGoogle Scholar
  47. 47.
    B.A. Lang, M. Cernoch, I. Vermousek, and M. Simickova: Complex biochemical analysis of human breast tumor tissue. Neoplasma 36: 61 (1989).PubMedGoogle Scholar
  48. 48.
    P. Fischer, J.E. Scherberich, and W. Schoeppe: Comparative biochemical and immunological studies on gamma-glutamyl transferases from human kidney and renal cell carcinoma applying monoclonal antibodies. Clinica Chemica Acta 191: 185 (1990).CrossRefGoogle Scholar
  49. 49.
    C. Haskovec, P. Lemez, R. Neuwirtova, J. Wilhelm, and P. Jarolim: Differentiation of human myeloid leukemia cell line ML-1 induced by retinoic acid and 1,25-dihydroxy vitamin D3. Neoplasma 37: 565 (1990).PubMedGoogle Scholar
  50. 50.
    M-S. Tsao and G. Batist: Induction of gamma-glutamyl transpeptidase activity by all-trans retinoic acid in cultured rat liver epithelial cells. Biochem Biophys Res Comm 157: 1039 (1988).PubMedCrossRefGoogle Scholar
  51. 51.
    L. Stenke, L. Laruen, P. Reizenstein, and J.A. Lindgren: Leukotriene production by fresh human bone marrow cells: evidence of altered lipoxygenase activity in chronic myelocytic leukemia. Exp Hematol 15: 203 (1987).PubMedGoogle Scholar
  52. 52.
    L. Stenke, J. Samuelsson, J. Palmblad, L. Dabrowski, P. Reizenstein and J.A. Lindgren: Brit J. Haematol 74: 257 (1990).CrossRefGoogle Scholar
  53. 53.
    H. Takayama, M. Okuma, K. Kanaji, T. Sugiyama, S. Sensaki, and H. Uchino: Altered arachidonate metabolism by leukocytes and platelets in myeloproliferative disorders. Prostaglandins, Leukotrienes and Medicine 12: 261 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Alan M. Miller
    • 1
  1. 1.Department of Medicine, Division of Medical Oncology and the Gainesville Veterans Affairs Medical CenterUniversity of Florida, College of MedicineGainesvilleUSA

Personalised recommendations