Advertisement

Activation of Protein Kinase C Regulates LTB4 Receptor on Guinea Pig Eosinophils

  • C. F. Ng
  • F. F. Sun
  • B. M. Taylor
  • P. Y.-K. Wong
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The eosinophils have traditionally been viewed as a regulatory cell. It function to defend the host against parasitic infection and to contribute to the suppression of inflammatory responses by inactivating such mediators as histamine1, platelet activating factor2, and slow reacting substance of anaphylaxis3. On the other hand, data have recently accumulated to suggest that the eosinophils are active participant in the inflammatory process in such tissues as the heart4, skin5, and in particular the lungs6–8, where the products released from these cells may contribute to the pathogenesis of chronic asthma in humans. For instance, it has been demonstrated that the major basic protein (MBP), a principal protein found within the granules of the eosinophils, can cause shedding of the respiratory epithelium8. In addition, these cells can generate reactive oxygen metabolites7 and lipid mediators such as LTC 4 10 and platelet activating factor11, all of which have been implicated in the development of asthma.

Keywords

Hank Balance Salt Solution Chemotactic Activity Chemotactic Response Human Eosinophil Major Basic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Zeiger, D. L. Yurdin, and H. R. Cotten, Histamine metabolism:II. Cellular and subcellular localization of the catabolic enzymes, histaminase and histamine methyl transferase, in human leukocytes, J. Allergy Clin. Immunol. 58: 172 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    L. A. Kater, E. J. Goetzl, and K. F. Austen, Isolation of human eosinophil phospholipase D, J. Clin. Invest. 57: 1173 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    W. R. Henderson, A. Jorg, and S. J. Klebanoff, Eosinophil peroxidasemediated inactivation of leukotrienes B4, C4, and D4, J. Immunol. 128: 2609 (1982).PubMedGoogle Scholar
  4. 4.
    C. J. Spry, M. Take, and P.C. Tai, Eosinophilic disorders affecting the myocardium and endocardium: a review, Heart Vessel Suppl. 1: 240 (1985).CrossRefGoogle Scholar
  5. 5.
    R. K. Winkelmann, and E. Frigas, Eosinophilic panniculitis: a clinicopathologic study, J. Cutan. Pathol. 13: 1 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    M. C. O’Donnell, S. J. Ackerman, G. J. Gleich, and L. L. Thomas, Activation of basophil and mast cell histamine release by eosinophil granule major basic protein, J. Exp. Med. 157: 1981 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Venge, L. Hankansson, and C. G. B. Peterson, Eosinophil activation in allergic disease, Int. Arch. Allergy Appl. Immunol. 82: 333 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Frigas, D. A. Loegering, and G. J. Gleich, Cytotoxic effects of the guinea-pig eosinophil major basic protein on tracheal epithelium, Lab. Invest. 42: 35 (1980).Google Scholar
  9. 9.
    J. Palmblad, H. Gyllenhammar, J. A. Lindgre, and C. L. Malmsten, Effects of Leukotrienes and f-Met-Leu-Phe on oxidative metabolism of neutrophils and eosinophils, J. Immunol. 132: 304 (1984).Google Scholar
  10. 10.
    P. F. Weller, C. W. Lee, D. W. Foster, E. J. Corey, K. F. Austen, and R. A. Lewis, Generation and metabolism of 5-lipoxygenase pathway leukotriene by human eosinophils:Predominate production of leukotriene C4, Proc. Natl. Acad. Sci. 80: 7626 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    J. C. Lee, D. J. Lenihan, B. Malone, C. L. Roddy, and S. I. Wasserman, Increased biosynthesis of platelet-activating factor in activated human eosinophil, J. Biol. Chem. 259: 5526 (1984).PubMedGoogle Scholar
  12. 12.
    E. J. Goetzl, and W. C. Pickett, The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs), J. Immunol. 125: 1789 (1980).PubMedGoogle Scholar
  13. 13.
    R. M. J. Palmer, F. J. Stepney, G. A. Higgs, and K. E. Eakins, Chemokinetic activity of arachidonic acid lipoxygenase products on leukocytes of different species, Prostaglandins. 20: 411 (1980).PubMedGoogle Scholar
  14. 14.
    A. Ford-Hutchinson, M. A. Bray, M. V. Doig, M. E. Shipley, and M. J. H. Smith, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature. 286: 264 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    D. W. Goldman, and E. J. Goetzl, Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4, Identification of a subset of high affinity receptors that transduce the chemotactic response, J. Exp. Med. 159: 1027 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    J. P. Cristol, B. Provencal, P. Borgeat, and P. Sirois, Characterization of Leukotriene 84 binding sites on guinea pig lung macrophages, J. Pharm. Exp. Ther. 247: 1199 (1988).Google Scholar
  17. 17.
    H. M. Sarau, and S. Mong, Co-expression of leukotriene B4 and leukotriene D4 receptors on human monocytic leukemia U-937 cells, Adv. in Prostaglandin Thromboxane, and Leuk. Res. 19: 180 (1989).Google Scholar
  18. 18.
    C. W. Benjamin, P. L. Rupple, and R. R. Gorman, Appearance of specific leukotriene B4 binding sites in myeloid differentiated HL-60 cells, J. Biol. Chem. 260: 14208 (1985).PubMedGoogle Scholar
  19. 19.
    J. B. Cheng, E. I. P. Cheng, F. Kohi and R. G. Townley, [3H]Leukotriene B4 binding to the guinea-pig spleen membrane preparation: A rich tissue source for a high-affinity leukotriene B4 receptor site, J. of Pharmacol., Exp. Ther. 236: 126 (1986).Google Scholar
  20. 20.
    I. Miki, T. Watanabe, M. Nakamura, Y. Seyama, M. Ui, F. Sato, and T. Shimizu, Solubilization and characterization of leukotriene B4 receptorGTP binding protein complex from porcine spleen, Biochem. Biophys. Res. Comm. 166: 342 (1990).CrossRefGoogle Scholar
  21. 21.
    M. Bradford, A rapid and sensitive method for the quantitation of microgram amounts of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    J. S. Bomalaski, and S. Mong, Binding of leukotriene B4 and its analogs to human polymorphonuclear leukocyte membrane receptors, Prostaglandins. 33: 855 (1987).PubMedGoogle Scholar
  23. 23.
    S. Charleson, J. F. Evans, F. J. Zamboni, Y. Leblanc, B. J. Fitzsimmons, C. Leveille, P. Dupuis, and A. W. Ford-Hutchinson, Leukotriene B3, Leukotriene B4 and Leukotriene B5; Binding to Leukotriene B4 receptors on rat and human leukocyte membranes, Prostaglandins. 32: 503 (1986).PubMedGoogle Scholar
  24. 24.
    R. A. Kreisle, and C. W. Parker, Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes, J. Exp. Med. 157: 628 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    D. W. Goldman, and E. J. Goetzl, Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes, J. Immunol. 129: 1600 (1982).PubMedGoogle Scholar
  26. 26.
    A. H. Lin, P. L. Ruppel, and R. R. Gorman, Leukotriene B4 binding to human neutrophils, Prostaglandins. 28: 837 (1984).PubMedGoogle Scholar
  27. 27.
    Y. Leblanc, B. J. Fitzsimmons, S. Charleson, P. Alexander, J. F. Evans, and J. Rokach, Analogs of leukotriene B4: Effects of modification of the hydroxyl groups on leukocyte aggregation and binding to leukocyte leukotriene B4 receptors, Prostaglandins. 33: 617 (1987).PubMedGoogle Scholar
  28. 28.
    E. J. Goetzl, and W. C. Pickett, Novel structural determinants of the human neutrophil chemotactic activity of leukotriene B, J. Exp. Med. 153: 482 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Frigas, and G. J. Gleich, The eosinophil and the pathophysiology of asthma, J. Allergy Clin. Immunol. 77: 527 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    A. J. Wardlaw, and A. B. Kay, The role of eosinophils in the pathogenesis of asthma. Allergy 42: 321 (1986).CrossRefGoogle Scholar
  31. 31.
    M. S. Dunnill, The pathology of asthma, with special reference to changes in the bronchial mucosa, J. Clin. Pathol. 13: 27 (1960).PubMedCrossRefGoogle Scholar
  32. 32.
    H. lijima, M. Ishii, K. Yamauchi, C. L. Chao, K. Kimura, S. Shimura, Y. Shindoh, H. Inoue, S. Mue, and T. Takishima, Bronchoalveolar lavage and histologic characterization of late asthmatic response in guinea pigs. Am. Rev. Respir. Dis. 136: 922 (1987).CrossRefGoogle Scholar
  33. 33.
    P. A. Hutson, M. K. Church, T. P. Clay, P. Miller, and S. T. Holgate, Early and late phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs, Am. Rev. Resp. Dis. 137: 548 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    C. J. Dunn, G. A. Elliott, J. A. Oostveen, and I. M. Richards, Development of a prolonged eosinophil-rich inflammatory leukocyte infiltration in the guinea-pig asthmatic response to ovalbumin inhalation, Am. Rev. Resp. Dis. 137: 541 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    I. M. Richards, R. G. Griffin, J. A. Oostveen, J. Morris, D. G. Wishka, and C. J. Dunn, Effect of the selective leukotriene B4 antagonist U-75302 on antigen-induced bronchopulmonary eosinophilia in sensitized guinea pigs, Am. Rev. Res. Dis. 140: 1713 (1989).Google Scholar
  36. 36.
    F. F. Sun, C. I. Czuk, B. M. Taylor, N. J. Crittenden, B. K. Stout, and H. G. Johnson, Biochemical and functional differences between eosinophils from guinea pig, primate and man, FASEB 3: A909 (1989).Google Scholar
  37. 37.
    A. J. Wardlaw, H. Hay, 0. Cromwell, J. V. Collins, and A. B. Kay, Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases, J. Allergy Clin. Immunol. 84: 19 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    M. J. Holtzman, H. Aizawa, J. A. Nadel, and E. J. Goetzl, Selective generation of leukotriene B4 by tracheal epithelial cells from dogs, Biochem, Biophys. Res. Comm. 114: 1071 (1983).Google Scholar
  39. 39.
    F. F. Sun, C. I. Czuk, and B. M. Taylor, Arachidonic acid metabolism in guinea pig eosinophils: synthesis of thromboxane B2 and leukotriene B4 in response to soluble or particulate activators, J. Leukoc. Biol., 46: 152 (1989).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • C. F. Ng
    • 1
  • F. F. Sun
    • 3
  • B. M. Taylor
    • 3
  • P. Y.-K. Wong
    • 2
  1. 1.Dept. of PharmacologyNew York Medical CollegeValhallaUSA
  2. 2.Dept. of Physiology and MedicineNew York Medical CollegeValhallaUSA
  3. 3.The UpJohn ComapanyKalamazooUSA

Personalised recommendations