Advertisement

The Purification of Two Intracellular Phospholipase A2s and the Effects of Phospholipase A2 Activating Protein and Mellitin on Their Activities

  • Marion R. Steiner
  • John S. Bomalaski
  • Mike A. Clark
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Inflammatory disease processes are often mediated or modulated by eicosanoids, produced and released by leukocytes, platelets and endothelial cells (for reviews see 1–3). A rate limiting step in eicosanoid biosynthesis is the availability of free arachidonic acid. Increased phospholipase A2 activity is the major mechanism for the release of arachidonic acid for eicosanoid biosynthesis in inflammatory cells (4–17). There appear to be several different modes of regulation of phospholipase A2 activity in response to treatment of cells with different agonists. Stimulation of phospholipase A2 activity may occur in response to an increase in the intracellular Ca+2 concentration (3,4,9,16). Since inhibitors of RNA and protein synthesis inhibit the release of arachidonic acid stimulated by some agonists, new protein synthesis is required for arachidonic acid release mediated by these agonists (7–15). Based on these data, we set out to identify a mammalian phospholipase A2 activating protein whose synthesis is regulated by proinflammatory agents. We have identified such a protein and have termed it PLAP, i.e., phospholipase A2 activating protein (17).

Keywords

Arachidonic Acid Ammonium Sulfate Arachidonic Acid Release Free Arachidonic Acid Fold Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. S. Ryan and J. W. Ryan, Tissue Immunopath. 3: 577 (1983).Google Scholar
  2. 2.
    M. A. Clark, P. L. Simon, M. J. Chen and J. S. Bomalaski, Ann. Reports Med. Chem. 22: 235 (1986).CrossRefGoogle Scholar
  3. 3.
    R. J. Flower and G. J. Blackwell, Biochem. Pharmacol. 25: 285 (1976).CrossRefPubMedGoogle Scholar
  4. 4.
    H. Van den Bosch, Biochim. Biophys. Acta. 604: 191 (1980).Google Scholar
  5. 5.
    M. A. Clark, D. Littlejohn, T. M. Conway, S. Mong, S. Steiner and S. T. Crooke J. Biol. Chem. 261: 10713 (1988).Google Scholar
  6. 6.
    M. A. Clark, M. J. Chen, S. T. Crooke and J. S. Bomalaski, Biochem. J. 250: 125 (1988).PubMedGoogle Scholar
  7. 7.
    A. A. Aderem, W. A. Scott and Z. Cohn, J. Exp. Med. 163: 139 (1981).CrossRefGoogle Scholar
  8. 8.
    R. M. Burch, A. Luini and J. Axelrod, Proc. Natl. Acad. Sci. USA 83: 7201 (1986).CrossRefGoogle Scholar
  9. 9.
    R. M. Burch and J. Axelrod, Proc. Natl. Acad. Sci. USA 84: 6374 (1987).CrossRefGoogle Scholar
  10. 10.
    M. A. Clark, D. Littlejohn, S. Mong and S.T. Crooke, Prostaglandins 31: 157 (1986).CrossRefPubMedGoogle Scholar
  11. 11.
    L. Ohuchi, T. Sato, T. Komabayski, S. Tsurufuji and H. Sato, Prost. Med. 4: 293 (1980).Google Scholar
  12. 12.
    S. S. Pong and L. Levine, J. Biol. Chem. 252: 1408 (1977).PubMedGoogle Scholar
  13. 13.
    F. Russo-Marie, M. Paing and D. Duval, J. Biol. Chem. 254: 8498 (1979).PubMedGoogle Scholar
  14. 14.
    M. Waite, J. Lipid Res. 26: 1379 (1985).PubMedGoogle Scholar
  15. 15.
    E. A. Dennis, Biotech. 5: 1294 (1987).CrossRefGoogle Scholar
  16. 16.
    M. R. Steiner, Arch. Biochem. Biophys. 286: 293 (1991).Google Scholar
  17. 17.
    M. A. Clark, T. M. Conway, R. G. L. Shorr and S. T. Crook, J. Biol. Chem. 262: 4402 (1987).PubMedGoogle Scholar
  18. 18.
    J. S. Bomalaski, M. Fallon, R. A. Turner, S. T. Crooke, P. C. Meunier and M. A. Clark, J. Lab. Clin. Med. 116: 814 (1990).PubMedGoogle Scholar
  19. 19.
    M. A. Clark, L. E. Ozgur, T. M. Conway, J. Dispoto, S. T. Crooke and J. S. Bomalaski, in press to Proc. Natl. Acad. Sci. USA.Google Scholar
  20. 20.
    S. Forst, J. Weiss and P. Elsbach, Biochemistry 25: 8381 (1986).CrossRefPubMedGoogle Scholar
  21. 21.
    R. M. Kramer, C. Hession, B. Johansen, G. Hayes, P. McGray, E. P. Chow, R. Tizar and R. B. Pepinsky, J. Biol. Chem. 264: 5768 (1989).PubMedGoogle Scholar
  22. 22.
    R. M. Kramer, E. F. Roberts, J. Manetta and J. E. Putnam, J. Biol. Chem. 266: 5268 (1991).PubMedGoogle Scholar
  23. 23.
    J. D. Clark, N. Milona and J. L. Knopf, Proc. Natl. Acad. Sci. USA 87: 7708 (1990).CrossRefGoogle Scholar
  24. 24.
    J. H. Gronich, J. V. Bonventre and R. A. Nemenoff, Biochem. J. 271: 37 (1990).PubMedGoogle Scholar
  25. 25.
    U. K. Laemmli, Nature 227: 680 (1970).CrossRefPubMedGoogle Scholar
  26. 26.
    M. A. Clark, T. M. Conway, R. G. L. Shorr and S. T. Crooke, Prostaglandins 32; 703 (1986).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Marion R. Steiner
    • 1
  • John S. Bomalaski
    • 2
  • Mike A. Clark
    • 3
  1. 1.University of KentuckyLexingtonUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA
  3. 3.Washington UniversitySt. LouisUSA

Personalised recommendations