Annexins and Signal Transduction

  • Reginald O. Morgan
  • Maria Pilar Fernandez
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The annexins comprise a structurally homologous family of calcium-dependent, membrane-binding proteins with distinctive biochemical properties and diverse regulatory functions. They have been implicated as homeostatic regulators of cell membrane function based on their ubiquity and fundamental involvement in phospholipid hydrolysis, calcium metabolism and binding to other vital cell constituents. Their putative functions include the facilitation of membrane fusion during exocytosis, control of membrane structure during growth and differentiation, and regulation of eicosanoid production by inflammatory mediators and immune stimulants.


Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator Membrane Fusion Anionic Phospholipid Phospholipid Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarsman, A. J., Mynbeek, G., van den Bosch, H., Rothhut, B., Prieur, B., Comera,C., Jordan, L., and Russo-Marie, F., 1987. Lipocortin inhibition of extracellular and intracellular phospholipases A2 is substrate concentration dependent. FEBS Lett. 219: 176–180.Google Scholar
  2. Ahn, N. G., Teller, D. C., Bienkowski, M. J., McMullen, B. A., Lipkin, E. W., and de Ha: en, C., 1988. Sedimentation equilibrium analysis of five lipocortin-related phospholipase A2 inhibitors from human placenta. Evidence against a mechanistically relevant association between enzyme and inhibitor. J. Biol. Chem. 263: 18657–63.Google Scholar
  3. Alonso, T., Morgan, R. O., Marvizon, J. C., Zarbl, H., and Santos, E., 1988. Malignant transformation by ras and other oncogenes produces common alterations in inositol phospholipid signaling pathways. Proc. Nat. Acad. Sci. (USA) 85: 4271–4275.CrossRefGoogle Scholar
  4. Amiguet, P., D’Eustachio, P., Kristensen, T., Wetsel, R. A., Saris, C. J., Hunter, T., Chaplin, D. D., and Tack, B. F., 1990. Structure and chromosome assignment of the murine p36 (calpactin I heavy chain) gene. Biochemistry 29: 1226–32.PubMedCrossRefGoogle Scholar
  5. Ando, Y., Imamura, S., Hong, Y. M., Owada, M. K., Kakunaga, T., and Kannagi, R., 1989. Enhancement of calcium sensitivity of lipocortin I in phospholipid binding induced by limited proteolysis and phosphorylation at the amino terminus as analyzed by phospholipid affinity column chromatography. J. Biol. Chem. 264: 6948–55.PubMedGoogle Scholar
  6. Ando, Y., Imamura, S., Owada, M. K., and Kannagi, R., 1991. Calcium-induced intracellular cross-linking of lipocortin I by tissue transglutaminase in A431 cells - Augmentation by membrane phospholipide. J. Biol. Chem. 266: 1101–1108.PubMedGoogle Scholar
  7. Andree, H. A. M., Reutelingsperger, C. P. M., Hauptmann, R., Henker, H. C., Hermens, W. T., and Willens, G. M., 1990. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J. Biol. Chem. 265: 4923–4928.PubMedGoogle Scholar
  8. Bailey, J. M., 1991. New mechanisms for effects of anti-inflammatory glucocorticoids. BioFactors 3: 91–117.Google Scholar
  9. Bazzi, M. D. and Nelsestuen, G. L., 1991. Proteins that bind calcium in a phospholipid-dependent manner. Biochemistry 30: 971–979.PubMedCrossRefGoogle Scholar
  10. Blackbourn, H. D., Walker, J. H., and Battey, N. H., 1991. Calcium-dependent phospholipid-binding proteins in plants–Their characterisation and potential for regulating cell growth. Planta 184: 67–73.CrossRefGoogle Scholar
  11. Blackwood, R. A. and Ernst, J. D., 1990. Characterization of Ca2(+)dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem. J. 266: 195–200.PubMedGoogle Scholar
  12. Browning, J. L., Ward, M. P., Wallner, B. P., and Pepinsky, R. B., 1990. Studies on the structural properties of lipocortin-1 and the regulation of its synthesis by steroids. Prop. Clin. Biol. Res. 349: 27–45.Google Scholar
  13. Burgoyne, R. D. and Geisow, M. J., 1989. The annexin family of calcium-binding proteins–Review article. Cell Calcium 10: 1–10.PubMedCrossRefGoogle Scholar
  14. Burns, A. L., Magendzo, K., Shirvan, A., Srivastava, M., Rojas, E., Alijani, M. R., and Pollard, H. B., 1989. Calcium channel activity of purified human synexin and structure of the human synexin gene. Proc. Natl. Acad. Sci. (USA) 86: 3798–802.CrossRefGoogle Scholar
  15. Carey, F., Forder, R., Edge, M. D., Greene, A. R., Horan, M. A., Strijbos, P. J., and Rothwell, N. J., 1990. Lipocortin 1 fragment modifies pyrogenic actions of cytokines in rats. Am. J. Physiol. 259: R266–9.PubMedGoogle Scholar
  16. Cartwright, P. H., Ilderton, E., Sowden, J. M., and Yardley, H. J., 1989. Inhibition of normal and psoriatic epidermal phospholipase A2 by picomolar concentrations of recombinant human lipocortin I. Br. J. Dermatol. 121: 155–60.PubMedCrossRefGoogle Scholar
  17. Chap, H., Fauvel, J., Gassamadiagne, A., Ragabthomas, J., and Simon, M. F., 1991. A striking homology between CFTR and annexins. MS-Med. Sci. 7: 8–9.Google Scholar
  18. Christmas, P., Callaway, J., Fallon, J., Jones, J., and Haigler, H. T., 1991. Selective secretion of annexin-1, a protein without a signal sequence, by the human prostate gland. J. Biol. Chem. 266: 2499–2507.Google Scholar
  19. Comera, C., Rothhut, B., Cavadore, J. C., Vilgrain, I., Cochet, C., Chambaz, E., and Russo-Marie, F., 1989. Further characterization of 4 lipocortins from human peripheral blood mononuclear cells. J. Cell. Biochem. 40: 361–370.PubMedCrossRefGoogle Scholar
  20. Conricode, K. M. and Ochs, R. S., 1989. Mechanism for the inhibitory and stimulatory actions of proteins on the activity of phospholipase A2. Biochim. Biophys. Acta 1003: 36–43.CrossRefGoogle Scholar
  21. Crumpton, M. J. and Dedman, J. R., 1990. Protein terminology tangle. Nature 345: 212.PubMedCrossRefGoogle Scholar
  22. Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. R., Jr., 1987. Inhibition of phospholipase A2 by “lipocortins” and calpactins. An effect of binding to substrate phospholipids. J. Biol. Chem. 262: 1698–1705.PubMedGoogle Scholar
  23. Diaz-Mußoz, M., Hamilton, S. L., Kaetzel, M. A., Hazarika, P., and Dedman, J. R., 1990. Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J. Biol. Chem. 265: 15894–9.Google Scholar
  24. Dorin, J. R., Emslie, E., and van Heyningen, V., 1990. Related calcium-binding proteins map to the same subregion of chromosome lq and to an extended region of synteny on mouse chromosome 3. Genomics 8: 420–426PubMedCrossRefGoogle Scholar
  25. Ernst, J. D., 1991. Annexin-III translocates to the periphagosomal region when neutrophils ingest opsonized yeast. J. Immunol. 146: 3110–3114.PubMedGoogle Scholar
  26. Ernst, J. D., Hoye, E., Blackwood, R. A., and Mok, T. L., 1991. Identification of a domain that mediates vesicle aggregation reveals functional diversity of annexin repeats. J. Biol. Chem. 266: 6670–6673.PubMedGoogle Scholar
  27. Fava, R. A., McKanna, J., and Cohen, S., 1989. Lipocortin I (p35) is abundant in a restricted number of differentiated cell types in adult organs. J. Cell. Physiol. 141: 284–93.PubMedCrossRefGoogle Scholar
  28. Fernandez, M. P., Selmin, O., Martin, G. R., Yamada, Y., Pfäffle, M., Deutzmann, R., Mollenhauer, J., and von der Mark, K., 1988. The structure of anchorin CII, a collagen binding protein isolated from chondrocyte membrane. J. Biol. Chem. 263: 5921–5925.Google Scholar
  29. Flower, R. J., 1988. Eleventh Gaddum memorial lecture. Lipocortin and the mechanism of action of the glucocorticoids. Br. J. Pharmacol. 94: 987–1015.PubMedCrossRefGoogle Scholar
  30. Frohlich, M., Motte, P., Galvin, K., Takahashi, H., Wands, J., and Ozturk, M., 1990. Enhanced expression of the protein kinase substrate p36 in human hepatocellular carcinoma. Mol. Cell. Biol. 10: 3216–23.PubMedGoogle Scholar
  31. Fujimoto, M., Sakata, T., Tsuruta, Y., Iwagami, S., Teraoka, H., Mihara, S., Fukiishi, Y., and Ide, M., 1990. Enhancement of bradykinininduced prostacyclin synthesis in porcine aortic endothelial cells by pertussis toxin–Possible implication of lipocortin-I. Biochem. Pharmacol. 40: 2661–2670.PubMedCrossRefGoogle Scholar
  32. Gassama-Diagne, A., Fauvel, J., and Chap, H., 1990. Calcium-independent phospholipases from guinea pig digestive tract as probes to study the mechanism of lipocortin. J. Biol. Chem. 265: 4309–14.PubMedGoogle Scholar
  33. Geisow, M. J., 1986. Common domain structure of Ca2+ and lipid-binding proteins. FEBS Lett. 203: 99–103.PubMedCrossRefGoogle Scholar
  34. Geisow, M. J., Fritsche, U., Hexham, J. M., Dash, B., and Johnson, T., 1986. A consensus amino-acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane-binding proteins. Nature 320: 636–638.PubMedCrossRefGoogle Scholar
  35. Genge, B. R., Wu, L. N., and Wuthier, R. E., 1990. Differential fractionation of matrix vesicle proteins. Further characterization of the acidic phospholipid-dependent Ca2(+)- binding proteins. J. Biol. Chem. 265: 4703–4710.PubMedGoogle Scholar
  36. Genge, B. R., Wu, L. N. Y., Adkisson, H. D., IV, and Wuthier, R. E., 1991. Matrix vesicle annexins exhibit proteolipid-like properties. Selective partitioning into lipophilic solvents under acidic conditions. J. Biol. Chem. 266: 10678–10685.PubMedGoogle Scholar
  37. Gerke, V., 1989. Tyrosine protein kinase substrate p36: A member of the annexin family of Ca2+/phospholipid-binding proteins. Cell Motil. Cytoskel. 14: 449–454.CrossRefGoogle Scholar
  38. Glenney, J. R., Jr, Tack, B., and Powell, M. A., 1987. Calpactins: Two distinct Ca++-regulated phospholipid-and actin-binding proteins isolated from lung and placenta. J. Cell Biol. 104: 503–511.PubMedCrossRefGoogle Scholar
  39. Goulding, N. J., Podgorski, M. R., Hall, N. D., Flower, R. J., Browning, J. L., Pepinsky, R. B., and Maddison, P. J., 1989. Autoantibodies to recombinant lipocortin-1 in rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 48: 843–850.Google Scholar
  40. Haigler, H. T., Schlaepfer, D. D., and Burgess, W. H., 1987. Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J. Biol. Chem. 262: 6921–6930.PubMedGoogle Scholar
  41. Hauptmann, R., Maurer-Fogy, I., Krystek, E., Bodo, G., Andree, H., and Reutelingsperger, C. P. M., 1989. Vascular anticoagulant beta: a novel human Cat+/phospholipid binding protein that inhibits coagulation and phospholipase-A2 activity - Its molecular cloning, expression and comparison with VAC-alpha. Eur. J. Biochem. 185: 6371CrossRefGoogle Scholar
  42. Hayashi, H., Owada, M. K., Sonobe, S., Domae, K., Yamanouchi, T., Kakunaga, T., Kitajima, Y., and Yaoita, H., 1990. Monoclonal antibodies specific to a Cat(+)-bound form of lipocortin I distinguish its Cat(+)-dependent phospholipid-binding ability from its ability to inhibit phospholipase A2. Biochem. J. 269: 709–15.PubMedGoogle Scholar
  43. Hirata, F., 1989. The role of lipocortins in cellular function as a second messenger of glucocorticoids. in: “Anti-inflammatory Steroid Action. Basic and Clinical Aspects.”, Academic Press.Google Scholar
  44. Horlick, K. R., Cheng, I. C., Wong, W. T., Wakeland, E. K., and Nick, H. S., 1991. Mouse lipocortin-I gene structure and chromosomal assignment–Gene duplication and the origins of a gene family. Genomics 10: 365–374.PubMedCrossRefGoogle Scholar
  45. Huang, K.-S., Wallner, B. P., Mattaliano, R. J., Tizard, R., Burne, C., Frey, A., Hession, C., McGray, P., Sinclair, L. K., Chow, E. P., Browning, J. L., Ramachandran, K. L., Tang, J., Smart, J. E., and Pepinsky, R. B. 1986. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60-v-src and of the epidermal growth factor receptor/kinase. Cell 46: 191–199.PubMedCrossRefGoogle Scholar
  46. Ialenti, A., Doyle, P. M., Hardy, G. N., Simpkin, D. S., and Di Rosa, M., 1990. Anti-inflammatory effects of vasocortin and nonapeptide fragments of uteroglobin and lipocortin I (antiflammins). Agents Actions 29: 48–9.PubMedCrossRefGoogle Scholar
  47. Jindal, H. K., Chaney, W. G., Anderson, C. W., Davis, R. G., and Vishwanatha, J. K., 1991. The protein-tyrosine kinase substrate, calpactin I heavy chain (p36), is part of the primer recognition protein complex that interacts with DNA polymerase alpha. J. Biol. Chem. 266: 5169–5176.PubMedGoogle Scholar
  48. Johnston, P. A., Perin, M. S., Reynolds, G. A., Wasserman, S. A., and Sudhof, T. C., 1990. Two novel annexins from Drosophila melanogaster. Cloning, characterization, and differential expression in development. J. Biol. Chem. 265: 11382–8.PubMedGoogle Scholar
  49. Kaetzel, M. A., Hazarika, P., and Dedman, J. R., 1989. Differential tissue expression of three 35-kDa annexin calcium-dependent phospholipidbinding proteins. J. Biol. Chem. 264: 14463–70.PubMedGoogle Scholar
  50. Kaplan, R., Jaye, M., Burgess, W. H., Schlaepfer, D. D., and Haigler, H. T., 1988. Cloning and expression of cDNA for human endonexin II, a Ca2+ and phospholipid binding protein. J. Biol. Chem. 263: 8037–8043.PubMedGoogle Scholar
  51. Keutzer, J. C. and Hirschhorn, R. R., 1990. The growth-regulated gene 1B6 is identified as the heavy chain of calpactin I. Exp. Cell Res. 188: 153–9.PubMedCrossRefGoogle Scholar
  52. Klee, C. B., 1988. Ca2+-dependent phospholipid- (and proteins. Biochemistry 27: 6645–53.PubMedCrossRefGoogle Scholar
  53. Krishna, P., Kennedy, B. P., Waisman, D. M., van de Sande, J. H., and McGhee, J. D., 1990. Are many Z-DNA binding proteins actually phospholipid-binding proteins?. Proc. Natl. Acad. Sci. LUSA) 87: 1292–5.CrossRefGoogle Scholar
  54. Leslie, C. C. and Channon, J. Y., 1990. Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity. Biochim. Biophys. Acta 1045: 261–270.CrossRefGoogle Scholar
  55. Lundgren, J. D., Hirata, F., Marom, Z., Logun, C., Steel, L., Kaliner, M., and Shelhamer, J., 1988. Dexamethasone inhibits respiratory glycoconjugate secretion from feline airways in vitro by the induction of lipocortin (lipomodulin) synthesis. Am. Rev. Respir. Dis. 137: 353–357.PubMedCrossRefGoogle Scholar
  56. Machoczek, K., Fischer, M., and S: oling, H. D., 1989. Lipocortin I and lipocortin II inhibit phosphoinositide-and polyphosphoinositidespecific phospholipase C. The effect results from interaction with the substrates. FEBS Lett. 251: 207–12.Google Scholar
  57. Meers, P., Daleke, D., Hong, K., and Papahadjopoulos, D., 1991. Interactions of annexins with membrane phospholipids. Biochemistry 30: 2903–2908.PubMedCrossRefGoogle Scholar
  58. Mollenhauer, J., Bee, J. A., Lizarbe, M. A., and von der Mark, K., 1984. Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J. Cell. Biol. 98: 1572–1578.PubMedCrossRefGoogle Scholar
  59. Mollenhauer, J. and von der Mark, K., 1983. Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membrane. EMBO J. 2: 45–50.PubMedGoogle Scholar
  60. Mosser, G., Ravanat, C., Freyssinet, J. M., and Brisson, A., 1991. Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. J. Mol. Biol. 217: 241–245.PubMedCrossRefGoogle Scholar
  61. Ota, Y., Inaba, N., Shirotake, S., Fukazawa, I., Takamizawa, H., and Bohn, H., 1990. Enzyme immunoassay for placental protein 4 (PP4) and its possible diagnostic significance in patients with genital tract cancer. Arch. Gynecol. Obstet. 247: 139–47.PubMedCrossRefGoogle Scholar
  62. Parente, L., Di Rosa, M., Flower, R. J., Ghiara, P., Meli, R., Persico, P., Salmon, J. A., and Wood, J. N., 1984. Relationship between the anti-phospholipase and anti-inflammatory effects of glucocorticoidinduced proteins. Eur. J. Pharmacol. 99: 233–239.PubMedCrossRefGoogle Scholar
  63. Peers, S. H., Taylor, R. D., and Flower, R. J., 1987. A novel binding assay for phospholipase A2. Biochem. Pharmacol. 36: 4287–4291.PubMedCrossRefGoogle Scholar
  64. Pepinsky, R. B., Tizard, R., Mattaliano, R. J., Sinclair, L. K., Miller, G. T., Browning, J. L., Chow, E. P., Burne, C., Huang, K. S., Pratt, D., 1988. Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J. Biol. Chem. 263: 10799–811.PubMedGoogle Scholar
  65. Pfäffle, M., Ruggiero, F., Hofmann, H., Fernandez, M. P., Selmin, O., Yamada, Y., Garrone, R., and von der Mark, K., 1988. Biosynthesis, secretion and extracellular localization of anchorin CII, a collagen-binding protein of the calpactin family. EMBO J. 7: 2335 2342Google Scholar
  66. Pollard, H. B., Burns, A. L., and Rojas, E., 1990. Synexin (Annexin-VII)–A cytosolic calcium-binding protein which promotes membrane fusion and forms calcium channels in artificial bilayer and natural membranes. J. Membrane Biol. 117: 101–112.CrossRefGoogle Scholar
  67. R: omisch, J., Schorlemmer, U., Fickenscher, K., Paques, E. P., and Heimburger, N., 1990. Anticoagulant properties of placenta protein-4 (annexin-V). Thromb. Res. 60: 355–366.Google Scholar
  68. Rainteau, D. P., Weinman, S. J., Kabaktchis, C. A., Smith, V. L., Kaetzel, M. A., Dedman, J. R., and Weinman, J. S., 1988. The expression of the 35- and 67-kDa calcimedins is dependent on thyroid hormone. J. Biol. Chem. 263: 12844–8.PubMedGoogle Scholar
  69. Rojas, E., Pollard, H. B., Haigler, H. T., Parra, C., and Burns, A. L., 1990. Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. J. Biol. Chem. 265: 21207–215.PubMedGoogle Scholar
  70. Ross, T. S., Tait, J. F., and Majerus, P. W., 1990. Identity of inositol 1,2-cyclic phosphate 2-phosphohydrolase with lipocortin III. Science 248: 605–7.PubMedCrossRefGoogle Scholar
  71. Rothhut, B., Russo-Marie, F., Wood, J., Di Rosa, M., and Flower, R. J., 1983. Further characterization of the glucocorticoid-induced antiphospholipase protein “renocortin”. Biochem. Biophys. Res. Commun. 117: 878–884.Google Scholar
  72. Sakanoue, Y., Kusunoki, M., Hatada, T., Sakiyama, T., Fujita, S., Yamamura, T., and Utsunomiya, J., 1990. The lipocortin of colon mucosa in ulcerative colitis. Horm. Metab. Res. 22: 453–454.PubMedCrossRefGoogle Scholar
  73. Sakata, T., Iwagami, S., Tsuruta, Y., Teraoka, H., Hojo, K., Suzuki, S., Sato, K., and Suzuki, 1990. The role of lipocortin I in macrophage-mediated immunosuppression in tumor-bearing mice. J. Immunol. 145: 387–96.PubMedGoogle Scholar
  74. Schlaepfer, D. D. and Haigler, H. T., 1987. Characterization of Ca2+- dependent phospholipid binding and phosphorylation of lipocortin I. J. Biol. Chem. 262: 6931–6937.PubMedGoogle Scholar
  75. Schlaepfer, D. D. and Haigler, H. T., 1990. Expression of annexins as a function of cellular growth state. J. Cell Biol. 111: 229–38.PubMedCrossRefGoogle Scholar
  76. Strandvik, B., Br: onneg”ard, M., Gilljam, H., and Carlstedt-Duke, J., 1988. Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis. Scand. J. Gastroenterol. Suppl. 143: 1–4.Google Scholar
  77. Sudhof, T. C., Slaughter, C. A., Leznicki, I., Barjon, P., and Reynolds, G. A., 1988. Human 67-kDa calelectrin contains a duplication of four repeats found in 35-kDa lipocortins. Proc. Natl. Acad. Sci. (USA) 85: 664–668.CrossRefGoogle Scholar
  78. Taylor, W. R. and Geisow, M. J., 1987. Predicted structure for the calcium-dependent membrane-binding proteins p35, p36, and p32. Protein Eno. 1: 183–7.CrossRefGoogle Scholar
  79. Toker, A., Ellis, C. A., Sellers, L. A., and Aitken, A., 1990. Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14–3–3 protein. Eur. J. Biochem. 191: 421 – 9.PubMedCrossRefGoogle Scholar
  80. von der Mark, K., Mollenhauer, J., Kuhl, U., Bee, J., and Lesot, H., 1984. Anchorins: A new class of membrane proteins involved in cell-matrix interactions. in: “The Role of Extracellular Matrix in Development”, Alan R. Liss, New York.Google Scholar
  81. Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandran, K. L., and Pepinsky, R. B., 1986. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320: 77–81.PubMedCrossRefGoogle Scholar
  82. Weber, G. and Ferber, E., 1990. Selective inhibition of phospholipase A2 by different lipocortins. Biol. Chem. Hoppe-Sevler 371: 725–731.CrossRefGoogle Scholar
  83. Weber, K., Johnsson, N., Plessmann, U., Van, P. N., Soling, H.-D., Ampe, C., and Vanderkerckhove, J., 1987. The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure of Ca2+-modulated lipid binding proteins. EMBO J. 6: 1599–1604.PubMedGoogle Scholar
  84. Wirl, G. and Schwartz-Albiez, R., 1990. Collagen-binding proteins of mammary epithelial cells are related to Ca2(+)- and phospholipidbinding annexins. J. Cell Physiol. 144: 511–22.PubMedCrossRefGoogle Scholar
  85. Wu, L. N. Y., Genge, B. R., Lloyd, G. C., and Wuthier, R. E., 1991. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage–Interaction between matrix vesicle proteins and different types of collagen. J. Biol. Chem. 266: 1195–1203.PubMedGoogle Scholar
  86. Zaks, W. J. and Creutz, C. E., 1990. Evaluation of the annexins as potential mediators of membrane fusion in exocytosis. J. Bioenerq. Biomembr. 22: 97–120.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Reginald O. Morgan
    • 1
  • Maria Pilar Fernandez
    • 2
  1. 1.Children’s National Medical CenterUSA
  2. 2.Biochemistry & Molecular BiologyUniversity of OviedoOviedoSpain

Personalised recommendations