Allene Oxide Biosynthesis and Metabolism

  • Wen-Chao Song
  • Alan R. Brash
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Allene oxides are reactive epoxides with a versatile chemistry.1 The name allene oxide comes from the chemical literature — the first chemical syntheses of this type of epoxide involved the oxidation of an allene, Figure 1. In biochemical systems, allene oxides are synthesized by the enzymic dehydration of hydroperoxides (lipoxygenase products), (Figure 1). Allene oxides are extremely unstable and are prone to hydrolysis and unique intramolecular rearrangements.2 While these reactions can occur in the absence of an enzymic catalyst, the naturally occurring allene oxides are substrates for enzymatic/metabolic transformations to end-products that are thought to include prostaglandins or prostaglandin-like molecules,3–5 Fig. 2.


Jasmonic Acid Allene Oxide Acetone Powder Jasmonic Acid Biosynthesis Prostaglandin Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. H. Chan, and B. S. Ong, Chemistry of Allene Oxides, Tetrahedron 36: 2369–2289 (1980).Google Scholar
  2. 2.
    M. Hamberg, Fatty acid allene oxides, J. Am. Oil. Chem. Soc. 66:1445 1449 (1989).Google Scholar
  3. 3.
    B. A. Vick and D. C. Zimmerman, The biosynthesis of jasmonic acid: A physiological role for plant lipoxygenase, Biochem. Biophys. Res. Commun. 111:470–477 (1983).Google Scholar
  4. 4.
    E. J. Corey, M. d’Alarcao, S. P. T. Matsuda, and P. T. Lansbury, Jr., Intermediacy of 8-(R)-HPETE in the conversion of arachidonic acid to pre-clavulone A by Clavularia viridis. Implications for the biosynthesis of marine prostanoids. J. Am. Chem. Soc. 109:289–290 (1987).Google Scholar
  5. 5.
    A. R. Brash, S. W. Baertschi, C. D. Ingram, and T. M. Harris, On noncyclooxygenase prostaglandin synthesis in the sea whip coral, Plexaura homomalla: An 8(R)-lipoxygenase pathway leads to formation of an a-ketol and a racemic prostanoid, J. Biol. Chem. 262:15829–15839 (1987).Google Scholar
  6. 6.
    H. W. Gardner, Recent investigations into the lipoxygenase pathways of plants, Biochim. Biophys. Acta in press (1991).Google Scholar
  7. 7.
    M. Hamberg, Mechanism of corn hydroperoxide isomerase: Detection of 12,13(S)-oxido-9(Z),11-octadecadienoic acid, Biochim. Biophys. Acta 920:76–84 (1987).Google Scholar
  8. 8.
    S. W. Baertschi, C. D. Ingram, T. M. Harris, and A. R. Brash, Absolute Configuration of cis-l2-oxophytodienoic acid of flaxseed: Implications for the mechanisn of biosynthesis from the 13(S)hydroperoxide of linolenic acid, Biochemistry 27: 18–24 (1988).Google Scholar
  9. 9.
    M. Hamberg, Biosynthesis of 12-Oxo-10,15(2)-phytodienoic acid: Identification of an allene oxide cyclase, Biochem. Biophys. Res. Commun. 156:543–550 (1988).Google Scholar
  10. 10.
    A. J. Weinheimer, and R. L. Spraggins, The Occurrence of two new prostaglandin derivatives (15-Epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla, Tetrahedron Lett. 59:5185–5188 (1969).Google Scholar
  11. 11.
    R. J. Light and B. Samuelsson, Identification of prostaglandins in the gorgonian, Plexaura homomalla, Eur. J. Biochem. 28:232–240 (1972).Google Scholar
  12. 12.
    W. P. Schneider, R. D. Hamilton, L. E. Rhuland, Occurrence of esters of 15(S)-prostaglandin A2 and E2 in coral, J. Am. Chem. Soc. 94:2122–2123 (1972).Google Scholar
  13. 13.
    W. P. Schneider, R. A. Morge, and B. E. Henson, The occurrence of 13,14-dihydro and 13,14-cis-unsaturation prostaglandins in the coral Plexaura homomalla. Synthesis of 13,14-cis-prostaglandin E2 15-acetate methyl ester, and the 13,14-cis analogues of prostaglandin and prostaglandin F, J. Am. Chem. Soc. 99:6062–6066 (1977).Google Scholar
  14. 14.
    H. Kikuchi, Y. Tsukitani, K. Iguchi, Y. Yamada, Clavulones, new type of prostanoids from the stolonifer Clavularis viridis Quoy and Gaimard, Tetrahedron Letters 23: 5171 (1982).Google Scholar
  15. 15.
    B. J. Baker, R. K. Okuda, T. K. Yu, and P. J. Scheuer, Punaglandins: Halogenated antitumor eicosanoids from the octocoral Telesto riisei, J. Am. Chem. Soc. 107:2976–2977 (1991).Google Scholar
  16. 16.
    A. R. Brash, M. A. Hughes, D. J. Hawkins, W. E. Boeglin, and W-C. Song, Allene oxide and aldehyde biosynthesis in starfish oocytes, submitted for publication (1991).Google Scholar
  17. 17.
    L. Meijer, A. R. Brash, R. W. Bryant, K. Ng, J. Maclouf, and H. Sprecher, Stereospecific induction of starfish oocyte maturation by (8R)-hydroxyeicosatetraenoic Acid, J. Biol. Chem. 261:1704017047 (1986).Google Scholar
  18. 18.
    A. R. Brash, S. W. Baertschi, C. D. Ingram, and T. M. Harris, Isolation of natural allene oxides. Unstable intermediates in the metabolism of lipid hydroperoxides, Proc. Natl. Acad. Sci. U.S.A. 85:3382–3386 (1988).Google Scholar
  19. 19.
    A. R. Brash, Formation of an allene oxide from (8R)-8hydroperoxyeicosatetraenoic acid in the coral Plexaura homomalla, J. Am. Chem. Soc. 111:1891–1892 (1989).Google Scholar
  20. 20.
    E. J. Corey, H. E. Ensley, M. Hamberg, and B. Samuelsson, Disparate pathways of prostaglandin biosynthesis in coral and mammalian systems, J. Chem. Soc.. Chem. Commun. 277–278 (1975).Google Scholar
  21. 21.
    S. W. Baertschi, A. R. Brash, and T. M. Harris, Formation of a cyclopropyl eicosanoid via an allene oxide in the coral Plexaura homomalla: Implications for the biosynthesis of 5,6transprostaglandin A2 J. Am. Chem, Soc. 111:5003–5005 (1989).Google Scholar
  22. 22.
    W-C. Song, and A. R. Brash, Investigation of the allene oxide pathway in the coral Plexaura homomalla: formation of novel ketols and isomers of prostaglandin A2 from 15-hydroxyeicosatetraenoic acid, submitted for publication, (1991).Google Scholar
  23. 23.
    B. A. Vick and D. C. Zimmerman, Lipoxygenase, hydroperoxide isomerase and hydroperoxide cyclase in young cotton seedlings, Plant Physiol. 67: 92–97 (1981).Google Scholar
  24. 24.
    B. A. Vick and D. C. Zimmerman, Pathways of fatty acid hydroperoxide metabolism in spinach leaf chloroplasts, Plant Physiol. 85: 10731078 (1987).Google Scholar
  25. 25.
    W-C. Song, and A. R. Brash, Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450, Science in press, (1991).Google Scholar
  26. 26.
    D. C. Zimmerman and B. A. Vick, Hydroperoxide isomerase. A new enzyme of lipid metabolism, Plant Physiol. 46: 445–453 (1970).Google Scholar
  27. 27.
    G. L. Bundy, E. G. Nidy, D. E. Epps, S. A. Mizsak, and R. J. Wnuk, Discovery of an arachidonic ccid C-8 lipoxygenase in the gorgonian coral Pseudoplexaura porosa, J. Biol. Chem. 261:747751 (1986).Google Scholar
  28. 28.
    E. J. Corey, S. P. T. Matsuda, R. Nagata, and M. B. Cleaver, Biosynthesis of 8-R-HPETE and preclavulone A from arachidonate in several species of Caribbean coral. A widespread route to marine prostanoids. Tetrahedron Letters 29: 2555–2558 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Wen-Chao Song
    • 1
  • Alan R. Brash
    • 1
  1. 1.Division of Clinical Pharmacology Department of PharmacologyVanderbilt UniversityNashvilleUSA

Personalised recommendations