Endothelial Cell Adhesive Interactions

Mechanisms and Consequences
  • Elisabetta Dejana
  • Lindsey Needham
  • John Gordon


Other chapters in this volume describe specific aspects of endothelial cell adhesive interactions in some detail—e.g., Chapters 7, 8, and 12. The aim of this chapter is to provide a broader perspective, and some additional information.


Integrin Receptor Adhesive Interaction Homing Receptor Node Homing Leukocyte Adhesion Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cartwright, G. E., Athens, J. W., and Wintrobe, M. M., 1964, Kinetics of granulopoiesis in normal man, Blood 24:780–803.PubMedGoogle Scholar
  2. 2.
    Ford, W. L., 1975, Lymphocyte migration and immune responses, Prog. Allergy 19:1–59.PubMedGoogle Scholar
  3. 3.
    Gowans, J. L., 1970, Lymphocytes, Harvey Lect. 64:87–119.Google Scholar
  4. 4.
    Graham, R. C., and Shannon, S. L., 1972, Peroxidase arthritis part 2—Lymphoid cell endothelial interactions during a developing immunologic inflammatory response, Am. J. Pathol. 69:7–24.PubMedGoogle Scholar
  5. 5.
    Berendt, A. R., Simmons, D. L., Tansey, J., Newbold, C., and Marsh, K., 1989, Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum, Nature 341:57–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Nicolson, G. L., and Winkelmake, J. L., 1975, Organ specificity of blood-borne tumour metastasis determined by cell adhesion, Nature 255:230–231.PubMedCrossRefGoogle Scholar
  7. 7.
    Form, D. M., Pratt, B. M., and Madri, J. A., 1983, Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components, Lab. Invest. 55:521–525.Google Scholar
  8. 8.
    Ingber, D. E., and Folkman, J., 1989, How does extracellular matrix control capillary morphogenesis? Cell 58:803–805.PubMedCrossRefGoogle Scholar
  9. 9.
    Burridge, K., 1986, Substrate adhesion in normal and transformed fibroblasts: Organization and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts, Cancer Rev. 4:18–78.Google Scholar
  10. 10.
    Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238:491–497.PubMedCrossRefGoogle Scholar
  11. 11.
    Hynes, R. O., 1986, Integrins: A family of cell surface receptors, Cell 48:549–554.CrossRefGoogle Scholar
  12. 12.
    Hemler, M. E., Huang, C., and Schwarz, L., 1987, The VLA protein family: Characterization of five different surface heterodimers each with a common 130,000 Mr subunit, J. Biol. Chem. 262:3300–3309.PubMedGoogle Scholar
  13. 13.
    Sanchez-Madrid, F., Nagy, J. A., Robbins, E., Simon, P., and Springer, T., 1983, A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit. The lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKMl/Mac-1), and the Gp 150,95 molecule, J. Exp. Med. 158:1785–1803.PubMedCrossRefGoogle Scholar
  14. 14.
    Ginsberg, M. H., Loftus, J. C., and Plow, E. F., 1988, Cytoadhesins, integrins and platelets, Thromb. Haemost. 59:1–20.PubMedGoogle Scholar
  15. 15.
    Kajiji, S., Tamura, R. N., and Quaranta, V., 1989, A novel integrin (αEß4) from human epithelial cells suggests a fourth family of integrin adhesion receptors, EMBO J. 8:673–680.PubMedGoogle Scholar
  16. 16.
    Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V., 1989, A novel vitronectin receptor integrin (αvβx) is responsible for distinct adhesive properties of carcinoma cells, Cell 57:59–69.PubMedCrossRefGoogle Scholar
  17. 17.
    Freed, E., Gailit, J., van der Geer, P., Ruoslahti, E., and Hunter, T., 1989, A novel integrin β subunit is associated with vitronectin receptor a subunit (αv) in a human osteosarcoma cell line and is a substrate for protein kinase C., EMBO J. 8:2955–2965.PubMedGoogle Scholar
  18. 18.
    Kramer, R. H., McDonald, K. A., and Vu, M. P., 1989, Human melanoma cells express a novel integrin receptor for laminin, J. Biol. Chem. 264:15642–15649.PubMedGoogle Scholar
  19. 19.
    Albelda, S. M., Daise, M., Levine, E. M., and Buck, C. A., 1989, Identification and characterisation of cell-substratum adhesion receptors on cultured human endothelial cells, J. Clin. Invest. 83:1992–2002.PubMedCrossRefGoogle Scholar
  20. 20.
    De Filippi, P., Truffa, G., Stefanuto, G., Altruda, F., Silengo, L., and Tarone, G., 1991, Tumor necrosis factor a and interferon γ modulate the expression of the vitronectin receptor (integrin β3) in human endothelial cells, J. Biol. Chem. 266:7638–7645.Google Scholar
  21. 21.
    Dejana, E., and Lauri, D., 1990, Biochemical and functional characteristics of integrins: A new family of adhesive receptors present in hemapoietic cells, Haematologica 75:1–6.PubMedGoogle Scholar
  22. 22.
    Languino, L. R., Gehlsen, K. R., Wayner, E., Carter, W. G., Engvall, E., and Ruoslahti, E., 1989, Endothelial cells use α2β1 integrin as a laminin receptor, J. Cell Biol. 109:2455–2462.PubMedCrossRefGoogle Scholar
  23. 23.
    Wayner, E. A., and Carter, W. G., 1987, Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique α and common β subunits, J. Cell Biol. 105: 1873–1884.PubMedCrossRefGoogle Scholar
  24. 24.
    Conforti, G., Zanetti, A., Colella, S., Abbadini, M., Marchisio, P. C., Pytela, R., Giancotti, F., Tarone, G., Languino, L. R., and Dejana, E., 1989, Interaction of fibronectin with cultured human endothelial cells. Characterization of the specific receptor, Blood 73:1576–1585.PubMedGoogle Scholar
  25. 25.
    Conforti, G., Zanetti, A., Pasquali-Ronchetti, I., Quaglino Jr., D., Neyroz, P., and Dejana, E., 1990, Modulation of vitronectin receptor binding by membrane lipid composition, J. Biol. Chem. 265:4011–4019.PubMedGoogle Scholar
  26. 26.
    Cheresh, D., 1987, Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor, Proc. Natl. Acad. Sci. USA 84:6471–6475.PubMedCrossRefGoogle Scholar
  27. 27.
    Dejana, E., Colella, S., Languino, L. R., and Marchisio, P. C., 1986, Fibrinogen induces adhesion, spreading and microfilament organization of human endothelial cells in vitro, J. Cell Biol. 104:1403–1411.CrossRefGoogle Scholar
  28. 28.
    Dejana, E., Lampugnani, M. G., Giorgi, M., Gaboli, M., Federici, A. B., Ruggeri, Z. M., and Marchisio, P. C., 1989, Von Willebrand factor promotes endothelial cell adhesion via an Arg-Gly-Asp dependent mechanism, J. Cell Biol. 109:367–375.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Kuppevelt, T., Languino, L. R., Gailit, J. O., and Ruoslahti, E., 1989, An alternative cytoplasmic domain of the integrin β3 subunit, Proc. Natl. Acad. Sci. USA 86:5415–5418.PubMedCrossRefGoogle Scholar
  30. 30.
    Polack, B., Duperray, A., Troesch, A., Berthier, R., and Marguerie, G., 1989, Biogenesis of the vitronectin receptor in human endothelial cell: Evidence that the vitronectin receptor and GpIIb-IIIa are synthesized by a common mechanism, Blood 73:1519–1524.PubMedGoogle Scholar
  31. 31.
    Stolpen, A. H., Eva, A. M., Guinan, C., Fiers, W., and Pober, J. S., 1986, Recombinant tumour necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers, Am. J. Pathol. 123:16–24.PubMedGoogle Scholar
  32. 32.
    Ignotz, R. A., Heino, J., and Messague, J., 1989, Regulation of cell adhesion receptors by transforming growth factor ß. Regulation of vitronectin receptor and LFA-1, J. Biol. Chem. 264:389–392.PubMedGoogle Scholar
  33. 33.
    Vedder, N. B., and Harlan, J. M., 1988, Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium, J. Clin. Invest. 81:676–682.PubMedCrossRefGoogle Scholar
  34. 34.
    Gailit, J., and Ruoslahti, E., 1988, Regulation of the fibronectin receptor affinity by divalent cations, J. Biol. Chem. 263:2065–2067.Google Scholar
  35. 35.
    Hirst, R., Horwitz, A., Buck, C., and Rohrschneider, L., 1986, Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases, Proc. Natl. Acad. Sci. USA 83:6470–6474.PubMedCrossRefGoogle Scholar
  36. 36.
    Brass, L. F., 1985, Ca++ transport across the platelet plasma membrane. A role for membrane glycoproteins II-IIIa, J. Biol. Chem. 260:2231–2238.PubMedGoogle Scholar
  37. 37.
    Banga, H. S., Simons, E., and Brass, L. F., 1986, Activation of phospholipases A and C in human platelets exposed to epinephrine: Role of glycoproteins IIb–IIIa and dual role of epinephrine, Proc. Natl. Acad. Sci. USA 83:9197–9201.PubMedCrossRefGoogle Scholar
  38. 38.
    Farrell, J. E., and Martin, G. S., 1989, Tyrosine specific protein phosphorylation is regulated by glycoprotein IIb–IIIa in platelets, Proc. Natl. Acad. Sci. USA 86:2234–2238.CrossRefGoogle Scholar
  39. 39.
    Grant, D. S., Tashiro, K. I., Segul-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K., 1989, Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro, Cell 58:933–943.Google Scholar
  40. 40.
    Dejana, E., Colella, S., Conforti, G., Abbadini, M., Gaboli, M., and Marchisio, P. C., 1988, Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells, J. Cell Biol. 107:1215–1223.PubMedCrossRefGoogle Scholar
  41. 41.
    Singer, I., Scott, S., Kawka, D. W., Kazazis, D. M., Gailit, J., and Ruoslahti, E., 1988, Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation, J. Cell Biol. 106:2171–2182.PubMedCrossRefGoogle Scholar
  42. 42.
    Dejana, E., Lampugnani, M. G., Giorgi, M., Gaboli, M., and Marchisio, P. C., 1990, Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor, Blood 75:1509–1517.PubMedGoogle Scholar
  43. 43.
    Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K., 1986, Interaction of plasma membrane fibronectin receptor with talin a transmembrane linkage, Nature 320:531–533.PubMedCrossRefGoogle Scholar
  44. 44.
    Lampugnani, M. G., Giorgi, M., Gaboli, M., Dejana, E., and Marchisio, P. C., 1990, Endothelial cell motility, integrin receptor clustering and microfilament organization are inhibited by agents that increase intracellular cAMP, Lab. Invest. 63:521–531.PubMedGoogle Scholar
  45. 45.
    Solowska, J., Guan, J.-L., Marcantonio, E. E., Trevithick, J. E., Buck, C. A., and Hynes, R. O., 1989, Expression of normal and mutant avian integrin subunits in rodent cells, J. Cell Biol. 109:853–861.PubMedCrossRefGoogle Scholar
  46. 46.
    Dustin, M. L., Rothlein, R., and Bhan, A. K., 1986, Induction by IL1 and interferon 7: Tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1), J. Immunol. 137:245–254.PubMedGoogle Scholar
  47. 47.
    Pober, J. S., Lapierre, L. A., Stolpen, A. H., Brock, T. A., Springer, T. A., Fiers, W., Bevilacqua, M. P., Mendrick, D., and Gimbrone, M. A. Jr., 1987, Activation of cultured human endothelial cells by recombinant lymphotoxin: Comparison with tumour necrosis factor and interleukin 1, J. Immunol. 138:3319–3324.PubMedGoogle Scholar
  48. 48.
    Dustin, M. L., Singer, K. H., Tuck, D. T., and Springer, T., 1988, Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon 7 and is mediated by intercellular adhesion molecule-1 (ICAM-1), J. Exp. Med. 167:1323–1340.PubMedCrossRefGoogle Scholar
  49. 49.
    Mentzer, S. J., Rothlein, R., Springer, T. A., and Faller, D., 1988, Intercellular adhesion molecule-1 (ICAM-1) is involved in the cytolytic T lymphocyte interaction with a human synovial cell line, J. Cell. Physiol. 137:173–178.PubMedCrossRefGoogle Scholar
  50. 50.
    Rothlein, R., Czajkowski, M., O’Neill, M. M., Marlin, S. D., Mainolfi, E., and Merluzzi, V. J., 1988, Induction of intercellular adhesion molecule-1 on primary and continuous cell lines by pro-inflammatory cytokines, J. Immunol. 141:1665–1669.PubMedGoogle Scholar
  51. 51.
    Munro, J. M., Pober, J. S., and Cotran, R. S., 1989, Tumour necrosis factor and interferon 7 induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis, Am. J. Pathol. 135:121–133.PubMedGoogle Scholar
  52. 52.
    Clark, E. A., Ledbetter, J. A., Holly, R. C., Dinndorf, P. A., and Shu, G., 1986, Polypeptides on human β lymphocytes associated with cell activation, Hum. Immunol. 16:100–113.PubMedCrossRefGoogle Scholar
  53. 53.
    Dougherty, G. J., Murdoch, S., and Hogg, N., 1988, The function of human intercellular adhesion molecule-1 (ICAM-1) in the generation of an immune response, Eur. J. Immunol. 18:35–39.PubMedCrossRefGoogle Scholar
  54. 54.
    Simmons, D., Makgoba, M. W., and Seed, B., 1988, ICAM, an adhesion ligand of LFA-1 is homologous to the neural cell adhesion molecule NCAM, Nature 331:624–627.PubMedCrossRefGoogle Scholar
  55. 55.
    Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., and Springer, T. A., 1988, Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobin and integrin supergene families, Cell 52:925–933.PubMedCrossRefGoogle Scholar
  56. 56.
    Staunton, D. E., Dustin, M. L., and Springer, T. A., 1989, Functional cloning of ICAM-2 a cell adhesion ligand for LFA-1 homologous to ICAM-1, Nature 339:61–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Dustin, M. L., Sanders, M. E., Shaw, S., and Springer, T. A., 1987, Purified lymphocyte function associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion, J. Exp. Med. 165:677–692.PubMedCrossRefGoogle Scholar
  58. 58.
    Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R., 1986, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Cell 47:333–348.PubMedCrossRefGoogle Scholar
  59. 59.
    Mendelsohn, C. L., Wimmer, E., and Racaniello, V. R., 1989, Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily, Cell 56:855–865.PubMedCrossRefGoogle Scholar
  60. 60.
    Greve, J. M., Davis, G., Meyer, A. M., Forte, C. P., Connolly Yost, S., Marlor, C. W., Kamarck, M. E., and McClelland, A., 1989, The major human rhinovirus receptor is ICAM-1, Cell 56:839–847.PubMedCrossRefGoogle Scholar
  61. 61.
    Staunton, D. E., Merluzzi, V. J., Rothlein, R., Barton, R., Marlin, S. D., and Springer, T. A., 1989, A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses, Cell 56:849–853.PubMedCrossRefGoogle Scholar
  62. 62.
    Rothlein, R., Dustin, M. L., Marlin, S. D., and Springer, T. A., 1986, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1, J. Immunol. 137:1270–1274.PubMedGoogle Scholar
  63. 63.
    Patarroyo, M., Clark, E. A., Prieto, J., Kantor, C., and Gahmberg, C. G., 1987, Identification of a novel adhesion molecule in human leukocytes by monoclonal antibody LB-2, FEBS Lett. 210:127–131.PubMedCrossRefGoogle Scholar
  64. 64.
    Springer, T. A., 1985, The LFA-1, Mac-1 glycoprotein family and its deficiency in an inherited disease, Fed. Proc. 44:2660–2663.PubMedGoogle Scholar
  65. 65.
    Rothlein, R., and Springer, T. A., 1986, The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester, J. Exp. Med. 162:1132–1149.CrossRefGoogle Scholar
  66. 66.
    Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48:549–554.PubMedCrossRefGoogle Scholar
  67. 67.
    Marlin, S. D., and Springer, T. A., 1987, Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function associated antigen 1 (LFA-1), Cell 51:813–819.PubMedCrossRefGoogle Scholar
  68. 68.
    Dustin, M. L., and Springer, T. A., 1989, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature 341:619–624.PubMedCrossRefGoogle Scholar
  69. 69.
    Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-Gly-Asp, a versatile cell recognition signal, Cell 44:517–518.PubMedCrossRefGoogle Scholar
  70. 70.
    Detmer, P. A., Wright, S. D., Olsen, E., Kimball, B., and Cohn, Z. A., 1987, Aggregation of complement receptors on human neutrophils in the absence of ligand, J. Cell Biol. 105:1137–1145.CrossRefGoogle Scholar
  71. 71.
    Corbi, A. L., Kishimoto, T. K., Miller, L. J., and Springer, T. A., 1988, The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) a subunit, J. Biol. Chem. 263:12403–12411.PubMedGoogle Scholar
  72. 72.
    Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C., 1989, Co-operative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83:2008–2017.CrossRefGoogle Scholar
  73. 73.
    Boyd, A. W., Wawryk, S. O., Burns, G. F., and Fecondo, J. V., 1988, Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact mediated immune mechanisms, Proc. Natl. Acad. Sci. USA 85:3095–3099.PubMedCrossRefGoogle Scholar
  74. 74.
    Makgoba, M. W., Sanders, M. E., Ginther Luce, G. E., Dustin, M. L., Springer, T. A., Clark, E. A., Mannoni, P., and Shaw, S., 1988, ICAM-1 a ligand for LFA-1 dependent adhesion of B, T and myeloid cells, Nature 331:86–88.PubMedCrossRefGoogle Scholar
  75. 75.
    Altmann, D. M., Hogg, N., Trowsdale, J., and Wilkinson, D., 1989, Co-transfection of ICAM-1 and HLA-DR reconstitutes human antigen presenting cell function in mouse L cells, Nature 338:512–514.PubMedCrossRefGoogle Scholar
  76. 76.
    Anderson, D C., and Springer, T. A., 1987, Leukocyte adhesion deficiency: An inherited defect in the Macl, LFA-1 and pl50,95 glycoproteins, Annu. Rev. Med. 38:175–194.PubMedCrossRefGoogle Scholar
  77. 77.
    Pober, J. S., 1988, Cytokine mediated activation of vascular endothelium, Am. J. Pathol. 133:426–433.PubMedGoogle Scholar
  78. 78.
    Dustin, M. L., and Springer, T. A., 1988, Lymphocyte function associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol. 107:321–331.PubMedCrossRefGoogle Scholar
  79. 79.
    Smith, C. W., Rothlein, R., Hughes, B. J., Mariscalco, M. M., Rudloff, H. E., Schmalstieg, F. C., and Anderson, D. C., 1988, Recognition of an endothelial determinant for CD18-dependent human neutrophil adherence and transendothelial migration, J. Clin. Invest. 82:1746–1756.PubMedCrossRefGoogle Scholar
  80. 80.
    Griffiths, C. E. M., Voorhees, J. J., and Nickoloff, B. J., 1989, Characterisation of intercellular adhesion molecule 1 and HLA-DR expression in normal and inflamed skin. Modulation by recombinant gamma interferon and tumor necrosis factor, J. Am. Acad. Dermatol. 20:617–629.PubMedCrossRefGoogle Scholar
  81. 81.
    Adams, D. H., Shaw, J., Hubscher, S. G., and Rothlein, R., 1989, Intercellular adhesion molecule 1 on liver allografts during infection, Lancet 2:1122–1124.PubMedCrossRefGoogle Scholar
  82. 82.
    Gowans, J. L., and Knight, E. J., 1964, The route of recirculation of lymphocytes in rat, Proc. R. Soc. London Ser. B 159:257–282.CrossRefGoogle Scholar
  83. 83.
    Woodruff, J. J., Clarke, L. M., and Chin, Y. H., 1987, Specific cell-adhesion mechanisms determining migration pathways of recirculating lymphocytes, Annu. Rev. Immunol. 5:201–222.PubMedCrossRefGoogle Scholar
  84. 84.
    Stamper, H. B., and Woodruff, J. J., 1976, Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes for high endothelial venules, J. Exp. Med. 144: 828–833.PubMedCrossRefGoogle Scholar
  85. 85.
    Butcher, E. C., Scollay, R. G., and Weissman, I. L., 1980, Organ specificity of lymphocyte migration: Mediation by highly selective lymphocyte interactions with organ specific determinants, Eur. J. Immunol. 10:556–561.PubMedCrossRefGoogle Scholar
  86. 86.
    Gallatin, W. M., St. John, T. P., Siegelman, M., Reichert, R., Butcher, E. C., and Weissman, I. L., 1986, Lymphocyte homing receptors, Cell 44:673–680.PubMedCrossRefGoogle Scholar
  87. 87.
    Jalkanen, S., Reichert, R. A., Gallatin, W. M., Bargatze, R. F., Weissman, I. L., and Butcher, E. C., 1986a, Homing receptors and the control of lymphocyte migration, Immunol. Rev. 91:39–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Jalkanen, S., Steere, A., Fox, R., and Butcher, E. C., 1986b, A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium, Science 233:556–558.PubMedCrossRefGoogle Scholar
  89. 89.
    Camerini, D., James, S. P., Stamenkovic, I., and Seed, B., 1989, Leu8/TQ1 is the human equivalent of the Mell4 lymph node homing receptor, Nature 342:78–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D., 1989, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56:1045–1055.PubMedCrossRefGoogle Scholar
  91. 91.
    Siegelman, M. H., Van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243:1165–1172.PubMedCrossRefGoogle Scholar
  92. 92.
    Tedder, T. T., Isaacs, C. M., Ernst, T. J., Demetri, G. D., Adler, D. A., and Disteche, C. M., 1989, Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule LAM-1, J. Exp. Med. 170:123–133.PubMedCrossRefGoogle Scholar
  93. 93.
    Gallatin, W. M., Weissman, I. L., and Butcher, E. C., 1983, A cell surface molecule involved in organ specific homing of lymphocytes, Nature 304:30–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Lewinsohn, D. M., Bargatze, R. F., and Butcher, E. C., 1987, Leukocyte-endothelial cell recognition: Evidence of a common molecular mechanism shared by neutrophils, lymphocytes and other leukocytes, J. Immunol. 138:4313–4321.PubMedGoogle Scholar
  95. 95.
    Jalkanen, S. T., Bargatze, R. F., Herron, L. R., and Butcher, E. C., 1986c, A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man, Eur. J. Immunol. 16:1195–1202.PubMedCrossRefGoogle Scholar
  96. 96.
    Jalkanen, S., Bargatze, R. F., De Los Toyos, J., and Butcher, E. C., 1987, Lymphocyte recognition of high endothelium: Antibodies to distinct epitopes of an 85–95 kDa glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal or synovial endothelial cells, J. Cell Biol. 105:983–990.PubMedCrossRefGoogle Scholar
  97. 97.
    Jalkanen, S., Jalkanen, M., Bargatze, R., Tammi, M., and Butcher, E. C., 1988, Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man, J. Immunol. 141: 1615–1623.PubMedGoogle Scholar
  98. 98.
    Gallatin, W. M., Wayner, E. A., Hoffman, P. A., St. John, T., Butcher, E. C., and Carter, W. G., 1989, Structural homology between lymphocyte receptors for high endothelium and class III extracellular matrix receptor, Proc. Natl. Acad. Sci. USA 86:4654–4658.PubMedCrossRefGoogle Scholar
  99. 99.
    Goldstein, L. A., Zhou, D.EE, Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F., and Butcher, E. C., 1989, A human lymphocyte homing receptor the Hermes antigen is related to cartilage proteoglycan core and link proteins, Cell 56:1063–1072.PubMedCrossRefGoogle Scholar
  100. 100.
    Stamenkovic, I., Amiot, M., Pesando, J. M., and Seed, B., 1989, A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family, Cell 56:1057–1062.PubMedCrossRefGoogle Scholar
  101. 101.
    Butcher, E. C., Lewinsohn, D., Duijvestijn, D., Bargatze, R. F., Wu, N., and Jalkanen, S., 1986, Interactions between endothelial cells and leukocytes, J. Cell Biochem. 30:121–131.PubMedCrossRefGoogle Scholar
  102. 102.
    Pals, S. T., Hogervorst, F., Keizer, G. D., Thepen, T., Horst, E., and Figdor, C. C., 1989, Identification of a widely distributed 90 kDa glycoprotein that is homologous to the Hermes-1 human lymphocyte homing receptor, J. Immunol. 143:851–857.PubMedGoogle Scholar
  103. 103.
    Picker, L. J., De Los Toyos, J., Telen, M. J., Haynes, B. F., and Butcher, E. C., 1989, Monoclonal antibodies against the CD44 [In(Lu)-related p80], and Pgp-1 antigens in man recognise the Hermes class of lymphocyte homing receptors, J. Immunol. 142:2046–2051.PubMedGoogle Scholar
  104. 104.
    Hamann, A., Jablonski-Westrich, D., Duijvestijn, A., Butcher, E. C., Baisch, H., Harder, R., and Thiele, H.-G., 1988, Evidence of an accessory role of LFA-1 in lymphocyte high endothelium interaction during homing, J. Immunol. 140:693–699.PubMedGoogle Scholar
  105. 105.
    Pals, S. T., Denotter, A., and Miedema, F., 1988, Evidence that leukocyte function associated antigen-1 is involved in recirculation and homing of human lymphocytes via high endothelial venules, J. Immunol. 140:1851–1853.PubMedGoogle Scholar
  106. 106.
    Holzmann, B., and Weissman, I. L., 1989, Integrin molecules involved in lymphocyte homing to Peyers patches, Immunol. Rev. 108:45–61.PubMedCrossRefGoogle Scholar
  107. 107.
    Streeter, P. R., Berg, E. L., Rouse, B. T. N., and Butcher, E. C., 1988, A tissue specific endothelial cell molecule involved in lymphocyte homing, Nature 331:41–46.PubMedCrossRefGoogle Scholar
  108. 108.
    Nakache, M., Berg, E. L., and Streeter, P.R., 1989, The mucosal vascular addressin is a tissue specific endothelial cell adhesion molecule for circulating lymphocytes, Nature 337:179–181.PubMedCrossRefGoogle Scholar
  109. 109.
    Streeter, P. R., Rouse, B. T. N., and Butcher, E. C., 1988, Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes, J. Cell Biol. 107:1853–1862.PubMedCrossRefGoogle Scholar
  110. 110.
    Stoolman, L. M., Tenforde, T. S., and Rosen, S. D., 1984, Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules, J. Cell Biol. 99:1535–1540.PubMedCrossRefGoogle Scholar
  111. 111.
    Rosen, S. D., Chi, S. I., True, D. D., Singer, M. S., and Yednock, T. A., 1989, Intravenously injected sialidase inactivates attachment sites for lymphocytes on high endothelial venules, J. Immunol. 142:1895–1902.PubMedGoogle Scholar
  112. 112.
    Duijvestijn, A. M., Schreiber, A. S., and Butcher, E. C., 1986, Interferon gamma regulates an antigen specific for endothelial cells involved in lymphocyte traffic, Proc. Natl. Acad. Sci. USA 83:9114–9118.PubMedCrossRefGoogle Scholar
  113. 113.
    Freemont, A. J., and Ford, W. L., 1985, Functional and morphological changes in post capillary venules in relation to lymphocytic infiltration into BCG induced granulomata in rat skin, J. Pathol. 147:1–12.PubMedCrossRefGoogle Scholar
  114. 114.
    Duijvestijn, A. M., Horst, E., Pals, S. T., Rouse, B. T. N., Steere, A. C., Picker, L. I, Meijer, C. J. L. M., and Butcher, E. C., 1988, High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452, Am. J. Pathol. 130:147–155.PubMedGoogle Scholar
  115. 115.
    Jutila, M. A., Berg, E. L., Kishimoto, T. K., Picker, L. J., Bargatze, R. F., Bishop, D. K., Orosz, C. G., Wu, N. W., and Butcher, E. C., 1989, Inflammation induced endothelial cell adhesion to lymphocytes, neutrophils and monocytes, Transplantation 48:727–731.PubMedCrossRefGoogle Scholar
  116. 116.
    Pober, J. S., 1988, Cytokine mediated activation of vascular endothelium, Am. J. Pathol. 133:426–433.PubMedGoogle Scholar
  117. 117.
    Johnston, G. I., Cook, R. G., and McEver, R. P., 1989, Cloning of GMP-140 a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56:1033–1044.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Elisabetta Dejana
    • 1
  • Lindsey Needham
    • 2
  • John Gordon
    • 2
  1. 1.Mario Negri InstituteMilanItaly
  2. 2.British Bio-technology LimitedCowley, OxfordUK

Personalised recommendations