Advertisement

Endothelial-Leukocyte Adhesion Molecules in Acute Inflammation and Atherogenesis

  • Myron I. Cybulsky
  • Michael A. GimbroneJr.

Abstract

Inflammation and atherosclerosis are pathophysiologic processes which share a common feature in their pathogenesis, the emigration of leukocytes from blood; yet, these processes involve different leukocytes, and have distinct locations, chronologies, and consequences. Acute inflammation is a rapid response of the host to local perturbations, such as trauma or bacterial infection, and is typically followed by resolution.1 A prominent feature of acute inflammation is the emigration of neutrophil leukocytes from the blood of postcapillary venules and small veins into the extravascular space. Atherosclerosis, on the other hand, is a chronic process occurring in arteries, and initially involves the adherence and transmigration of circulating monocytes into the arterial intima.2,3 The result is formation of atherosclerotic lesions that ultimately impinge on the arterial lumen and predispose to complications, such as thrombosis, hemorrhage, embolism, or dissection, which can have serious consequences for tissue perfusion.

Keywords

Human Umbilical Vein Endothelial Cell Leukocyte Adhesion Endothelial Monolayer Endothelial Cell Surface Postcapillary Venule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Movat, H. Z., 1985, The Inflammatory Reaction, Elsevier, Amsterdam.Google Scholar
  2. 2.
    Ross, R., 1986, The pathogenesis of atherosclerosis—An update, N. Engl. J. Med. 314:488–500.PubMedCrossRefGoogle Scholar
  3. 3.
    Munro, J. M., and Cotran, R. S., 1988, The pathogenesis of atherosclerosis: Atherogenesis and inflammation, Lab. Invest. 58:249–261.PubMedGoogle Scholar
  4. 4.
    Gimbrone, M. A., Jr., and Bevilacqua, M. P., 1988, Vascular endothelium: Functional modulation at the blood interface, in: Endothelial Cell Biology in Health and Disease (N. Simionescu and M. Simionescu, eds.), Plenum Press, New York, pp. 255–273.CrossRefGoogle Scholar
  5. 5.
    Stoolman, M. A., 1989, Adhesion molecules controlling lymphocyte migration, Cell 56:907–910.PubMedCrossRefGoogle Scholar
  6. 6.
    Colditz, I. G., and Movat, H. Z., 1984, Kinetics of neutrophil accumulation in acute inflammatory lesions induced by chemotaxins and chemotaxinigens, J. Immunol. 133:2169–2173.PubMedGoogle Scholar
  7. 7.
    Clark, E. R., and Clark, E. L., 1935, Observations on changes in blood vascular endothelium in the living animal, Am. J. Anat. 57:385–438.CrossRefGoogle Scholar
  8. 8.
    Marchesi, V. T., 1961, The site of leukocyte emigration in inflammation, Q. J. Exp. Physiol. 46:115–134.PubMedGoogle Scholar
  9. 9.
    Wedmore, C. V., and Williams, T. J., 1981, Control of vascular permeability by polymorphonuclear leukocytes in inflammation, Nature 289:646–650.PubMedCrossRefGoogle Scholar
  10. 10.
    Kopaniak, M. M., and Movat, H. Z., 1983, Kinetics of acute inflammation induced by Escherichia coli in rabbits: II. The effects of hyperimmunization, complement depletion and depletion of leukocytes, Am. J. Pathol. 110:13–29.PubMedGoogle Scholar
  11. 11.
    Cybulsky, M. I., McComb, D. J., and Movat, H. Z., 1989, Protein synthesis dependent and independent mechanisms of neutrophil emigration. Different mechanisms of inflammation in rabbits induced by interleukin-1, tumor necrosis factor alpha or endotoxin versus leukocyte chemoattractants, Am. J. Pathol. 135:227–237.PubMedGoogle Scholar
  12. 12.
    Rampart, M., and Williams, T. J., 1988, Evidence that neutrophil accumulation induced by interleukin-1 requires both protein biosynthesis and neutrophil CD18 antigen in vivo, Br. J. Pharmacol. 94:1143–1148.PubMedCrossRefGoogle Scholar
  13. 13.
    Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S., and Gimbrone, M. A., Jr., 1985, Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines, J. Clin. Invest. 76:2003–2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Dunn, C. J., and Fleming, W. E., 1985, The role of interleukin-1 in the inflammatory response with particular reference to endothelial cell-leukocyte adhesion, in: The Physiologic, Metabolic, and Immunologic Actions of Interleukin-1 (M. J. Kluger, J. J. Openheim, and M. C. Powanda, eds.), Liss, New York, pp. 45–54.Google Scholar
  15. 15.
    Schleimer, R. P., and Rutledge, B. K., 1986, Cultured human vascular endothelial cells acquire adhesiveness for neutrophils after stimulation with interleukin 1, endotoxin and tumor-promoting phorbol diesters, J. Immunol. 136:649–654.PubMedGoogle Scholar
  16. 16.
    Gamble, R. J., Harlan, J. M., Klebanoff, S. J., Lopez, A. F., and Vadas, M. A., 1985, Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor, Proc. Natl. Acad. Sci. USA 82:8667–8671.PubMedCrossRefGoogle Scholar
  17. 17.
    Pohlman, T. H., Stanness, K. A., Beatty, P. G., Ochs, H. D., and Harlan, J. M., 1986, An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1 and tumor necrosis factor-alpha increases neutrophil adherence by a CDw18-dependent mechanism, J. Immunol. 136:4548–4553.PubMedGoogle Scholar
  18. 18.
    Cavender, D. E., Haskard, D. O., Joseph, B., and Ziff, M., 1986, Interleukin 1 increases the binding of human B and T lymphocytes to endothelial cell monolayers, J. Immunol. 136:203–207.PubMedGoogle Scholar
  19. 19.
    Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S., and Gimbrone, M. A., Jr., 1987, Identification of an inducible endothelial-leukocyte adhesion molecule, Proc. Natl. Acad. Sci. USA 84:9238–9242.PubMedCrossRefGoogle Scholar
  20. 20.
    Pober, J. S., Bevilacqua, M. P., Mendrick, D. L., Lapierre, L. A., Fiers, W., and Gimbrone, M. A., Jr., 1986, Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells, J. Immunol. 136:1680–1687.PubMedGoogle Scholar
  21. 21.
    Pober, J. S., Lapierre, L. A., Stolpen, A. H., Brock, T. A., Springer, T. A., Fiers, W., Bevilacqua, M. P., Mendrick, D. L., and Gimbrone, M. A., Jr., 1987, Activation of cultured human endothelial cells by recombinant lymphotoxin: Comparison with tumor necrosis factor and interleukin 1 species, J. Immunol. 138:3319–3324.PubMedGoogle Scholar
  22. 22.
    Luscinskas, F. W., Brock, A. F., Arnaout, M. A., and Gimbrone, M. A., Jr., 1989, Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-dependent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endothelium, J. Immunol. 142:2257–2263.PubMedGoogle Scholar
  23. 23.
    Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., and Seed, B., 1989, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243:1160–1165.PubMedCrossRefGoogle Scholar
  24. 24.
    Siegelman, M. H., van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node and homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243:1165–1172.PubMedCrossRefGoogle Scholar
  25. 25.
    Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D., 1989, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56:1045–1055.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnston, G. I., Cook, R. G., and McEver, R. P., 1989, Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56:1033–1044.PubMedCrossRefGoogle Scholar
  27. 27.
    Bevilacqua, M. P., 1989, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Circulation (Suppl.) 80(4):II–I.Google Scholar
  28. 28.
    Butcher, E. C., 1990, Cellular and molecular mechanisms that direct leukocyte traffic, Am. J. Pathol. 136:3–11.PubMedGoogle Scholar
  29. 29.
    Larsen, E., Celi, A., Gilbert, G. E., Furie, B. C., Erban, J. K., Bonfanti, R., Wagner, D. D., and Furie, B., 1989, PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes, Cell 59:305–312.PubMedCrossRefGoogle Scholar
  30. 30.
    Geng, J.-G., Bevilacqua, M. P., Moore, K. L., Mclntyre, T. M., Prescott, S. M., Kim, J. M., Bliss, G. A., Zimmerman, G. A., and McEver, R. P., 1990, Rapid neutrophil adhesion to activated endothelium mediated by GMP-140, Nature 343:757–760.PubMedCrossRefGoogle Scholar
  31. 31.
    Simmons, D., Makgoba, M. W., and Seed, B., 1988, ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule, Nature 331:624–627.PubMedCrossRefGoogle Scholar
  32. 32.
    Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., and Springer, T. A., 1988, Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families, Cell 52:925–933.PubMedCrossRefGoogle Scholar
  33. 33.
    Osborn, L., Hession, C., Tizard, R., Vassalio, C., Luhowskyj, S., Chi-Rosso, G., and Lobb, D., 1989, Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes, Cell 59:1203–1211.PubMedCrossRefGoogle Scholar
  34. 34.
    Marlin, S. D., and Springer, T. A., 1987, Purified intracellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1), Cell 51:813–819.PubMedCrossRefGoogle Scholar
  35. 35.
    Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. E., and Lobb, R. R., 1990, VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4/fibronectin binding site, Cell 60:577–584.PubMedCrossRefGoogle Scholar
  36. 36.
    Smith, C. W., Rothlein, R., Hughes, B., Mariscalco, M., Schmalsteig, F., and Anderson, D. C., 1988, Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration, J. Clin. Invest. 82:1746–1756.PubMedCrossRefGoogle Scholar
  37. 37.
    Haskard, D., Cavender, D. O., Beatty, P., Springer, T. A., and Ziff, M., 1986, T lymphocyte adhesion to endothelial cells: Mechanisms demonstrated by anti-LFA-1 monoclonal antibodies, J. Immunol. 137:2901–2906.PubMedGoogle Scholar
  38. 38.
    Rice, G. E., and Bevilacqua, M. P., 1989, An inducible endothelial cell surface glycoprotein mediates melanoma adhesion, Science 246:1303–1306.PubMedCrossRefGoogle Scholar
  39. 39.
    Rice, G. E., Munro, J. M., and Bevilacqua, M. P., 1990, Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes. A CD11/CD18-independent adhesion mechanism, J. Exp. Med. 171:1369–1374.PubMedCrossRefGoogle Scholar
  40. 40.
    Cotran, R. S., Gimbrone, M. A., Jr., Bevilacqua, M. P., Mendrick, D. L., and Pober, J. S., 1986, Induction and detection of human endothelial activation antigen in vivo, J. Exp. Med. 164:661–666.PubMedCrossRefGoogle Scholar
  41. 41.
    Cotran, R. S., Pober, J. S., Gimbrone, M. A., Jr., Springer, T. A., Wiebke, E. A., Gaspari, A. A., Rosenberg, S. A., and Lotze, M. T., 1988, Endothelial activation during interleukin 2 immunotherapy. A possible mechanism for the vascular leak syndrome, J. Immunol. 140:1883–1886.PubMedGoogle Scholar
  42. 42.
    Munro, J. M., Pober, J. S., and Cotran, R. S., 1989, Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio Anubis, Am. J. Pathol. 135:121–133.Google Scholar
  43. 43.
    Messadi, D. V., Pober, J. S., Fiers, W., Gimbrone, M. A., Jr., and Murphy, G. F., 1987, Induction of an activation antigen on postcapillary venular endothelium in human skin organ culture, J. Immunol. 139:1557–1562.PubMedGoogle Scholar
  44. 44.
    Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A., 1986, Induction by IL 1 and interferon-gamma: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1), J. Immunol. 137:245–254.PubMedGoogle Scholar
  45. 45.
    Faull, R. J., and Russ, G. R., 1989, Tubular expression of intracellular adhesion molecule-1 during renal allograft rejection, Transplantation 48:226–230.PubMedCrossRefGoogle Scholar
  46. 46.
    Libby, P., 1987, The active roles of cells of the blood vessel wall in health and disease, in: Molecular Aspects of Medicine, Volume 9 (H. Baum, J. Gergely, and B. L. Fanburg, eds.), Pergamon Press, Elmsford, N.Y., pp. 499–567.Google Scholar
  47. 47.
    Hansson, G. K., Jonasson, L., Seifert, P. S., and Stemme, S., 1989, Immune mechanisms in atherosclerosis [Review], Arteriosclerosis 9:567–578.PubMedCrossRefGoogle Scholar
  48. 48.
    Buja, L. M., Kita, T., Goldstein, J. L., Watanabe, Y., and Brown, M. S., 1983, Cellular pathology of progressive atherosclerosis in the WHHL rabbit, Arteriosclerosis 3:87–101.PubMedCrossRefGoogle Scholar
  49. 49.
    Rosenfeld, M. E., Tsukada, T., Gown, A. M., and Ross, R., 1987, Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits, Arteriosclerosis 7:9–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Havel, R. J., Yamada, N., and Shames, D. M., 1989, Watanabe heritable hyperlipidemic rabbit. Animal model for familial hypercholesterolemia, Arteriosclerosis Suppl. I 9:I–33–I–38.Google Scholar
  51. 51.
    Cybulsky, M. I., and Gimbrone, M. A., Jr., 1991, Vascular endothelial cells express a monocyte adhesion molecule during atherogenesis, Science 251:788–791.PubMedCrossRefGoogle Scholar
  52. 52.
    Territo, M. C., Berliner, J. A., Almada, L., Ramirez, R., and Fogelman, A. M., 1989, Beta-very low density lipoprotein pretreatment of endothelial monolayers increases monocyte adhesion, Arteriosclerosis 9:824–828.PubMedCrossRefGoogle Scholar
  53. 53.
    Wheeler, M. E., Luscinskas, F. W., Bevilacqua, M. P., and Gimbrone, M. A., Jr., 1988, Cultured human endothelial cells stimulated with cytokines or endotoxin produce an inhibitor of leukocyte adhesion, J. Clin. Invest. 82:1211–1218.PubMedCrossRefGoogle Scholar
  54. 54.
    Gimbrone, M. A., Jr., Obin, M. S., Brock, A. F., Luis, E. A., Hass, P. E., Hebert, C. A., Yip, Y. K., Leung, D. W., Lowe, D. G., Kohr, W. J., Darbonne, W. C., Bechtol, K. B., and Baker, J. B., 1989, Endothelial-interleukin-8: A novel inhibitor of leukocyte-endothelial interactions, Science 246:1601–1603.PubMedCrossRefGoogle Scholar
  55. 55.
    Baggiolini, M., Walz, A., and Kunkel, S. L., 1989, Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils, J. Clin. Invest. 84:1045–1049.PubMedCrossRefGoogle Scholar
  56. 56.
    Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witztum, J. L., 1989, Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity, N. Engl. J. Med. 320:915–924.PubMedCrossRefGoogle Scholar
  57. 57.
    Berliner, J. A., Territo, M. C., Sevanian, A., Ramin, S., Kim, J. A., Bamshad, B., Esterson, M., and Fogelman, A. M., 1990, Minimally modified low density lipoprotein stimulates monocyte endothelial interactions, J. Clin. Invest. 85:1260–1266.PubMedCrossRefGoogle Scholar
  58. 58.
    Gerrity, R. G., Goss, J. A., and Soby, L., 1985, Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta, Arteriosclerosis 5:55–66.PubMedCrossRefGoogle Scholar
  59. 59.
    Berliner, J. A., Territo, M., Almada, L., Carter, A., Shafonsky, E., and Fogelman, A. M., 1986, Monocyte chemotactic factor produced by large vessel endothelial cells in vitro, Arteriosclerosis 6:254–258.PubMedCrossRefGoogle Scholar
  60. 60.
    Valente, A. J., Graves, D. J., Vialle-Valentin, C. E., Delgado, R., and Schwartz, C. J., 1988, Purification of a monocyte chemotactic factor secreted by non-human primate vascular cells in culture, Biochemistry 27:4162–4168.PubMedCrossRefGoogle Scholar
  61. 61.
    Quinn, M. T., Parthasarathy, S., and Steinberg, D., 1988, Lysophosphatidylcholine: A chemotactic factor for human monocytes and its potential role in atherogenesis, Proc. Natl. Acad. Sci. USA 85:2805–2809.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Myron I. Cybulsky
    • 1
  • Michael A. GimbroneJr.
    • 1
  1. 1.Vascular Research Division, Department of PathologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations