Modulation of Endothelial Paracellular Permeability

A Mechanistic Approach
  • F. R. Haselton
  • J. S. Alexander
  • S. N. Mueller
  • A. P. Fishman

Abstract

Inflammatory edema is a significant element of many disease, e.g., adult respiratory distress syndrome, septicemia, and hypoxia/reperfusion syndrome. In vivo studies have sought to identify the mechanism(s) by which inflammatory mediators produce edema. However, this approach has met with limited success since edema often results from a combination of both pressure-induced filtration of plasma proteins, and changes in the permeability properties of the endothelial lining of the vascular wall.1–3

Keywords

Polyethylene Glycol Phorbol Myristate Acetate Cell Column Phorbol Myristate Acetate PARACELLULAR Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Majno, G., Palade, G. E., and Schoefl, G. I., 1961, Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: A topographic study, J. Biophys. Biochem. Cytol. 11: 607–626.PubMedCrossRefGoogle Scholar
  2. 2.
    Drenckhahn, D., and Franz, H., 1986, Identification of actin-, α-actin, and vinculin-containing plaques at the lateral membrane of epithelial cells, J. Cell Biol. 102:1843–1852.PubMedCrossRefGoogle Scholar
  3. 3.
    Meyrick, B., Perkett, E. A., Harris, T. R., and Brigham, K. L., 1987, Correlation of permeability with the structure of the endothelial layer of pulmonary artery intimai explants, Fed. Proc. 46:2516–2520.PubMedGoogle Scholar
  4. 4.
    Renkin, E. M., 1952, Capillary permeability to lipid-soluble molecules, Am. J. Physiol. 168:538–545.PubMedGoogle Scholar
  5. 5.
    Bottaro, D., Shepro, D., and Hechtman, H. B., 1986, Heterogeneity of intimai and microvessel endothelial cell barriers in vitro, Microvasc. Res. 32:389–398.PubMedCrossRefGoogle Scholar
  6. 6.
    Bundgaard, M., 1983, Capillary transport in capillary endothelium: Does it occur? Fed. Proc. 42:2425–2430.PubMedGoogle Scholar
  7. 7.
    Simionescu, N., 1983, Cellular aspects of transcapillary exchange, Physiol. Rev. 63(4): 1536–1578.PubMedGoogle Scholar
  8. 8.
    Bottaro, D., Shepro, D., Peterson, S., and Hechtman, H. B., 1986, Serotonin, norepinephrine, and histamine mediation of endothelial cell barrier function in vitro, J. Cell. Physiol. 128:189–194.PubMedCrossRefGoogle Scholar
  9. 9.
    Haselton, F. R., Mueller, S. N., Howell, R. E., Levine, E. M., and Fishman, A. P., 1989, Chromatographic demonstration of reversible changes in endothelial permeability, J. Appl. Physiol. 67:2032–2048.PubMedGoogle Scholar
  10. 10.
    Alexander, J. S., Hechtman, H. B., and Shepro, D., 1988, Phalloidin improves endothelial barrier function and protects against inflammatory agent mediated permeability in vitro, Microvasc. Res. 35:308–315.PubMedCrossRefGoogle Scholar
  11. 11.
    Casnocha, S. A., Eskin, S. G., Hall, E. R., and Mclntire, L. V., 1989, Permeability of human endothelial monolayers: Effect of vasoactive agonists and cAMP, J. Appl. Physiol. 67(5): 1997–2005.PubMedGoogle Scholar
  12. 12.
    Rotrosen, D., and Gallin, J. I., 1986, Histamine type 1 receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers, J. Cell Biol. 103(6, Pt. l):2379–2387.PubMedCrossRefGoogle Scholar
  13. 13.
    Minnear, F. L., Moon, D. G., and Hill, L. A., 1987, Thrombin-induced increase in pulmonary endothelial permeability in vitro: Protective effect of isoproterenol, Ann. N.Y. Acad. Sci. 485:432–435.CrossRefGoogle Scholar
  14. 14.
    Franke, W. W., Cowin, P., Grund, C., Kuhn, C., and Kapprell, H.-P., 1988, The endothelial junction: The plaque and its components, in Endothelial Cell Biology in Health and Disease (N. Simionescu and M. Simionescu, eds.), Plenum Press, New York, pp. 147–166.CrossRefGoogle Scholar
  15. 15.
    Shasby, D. M., Shasby, S. S., Sullivan, M. J., and Petch, J. M., 1982, The role of the endothelial cell cytoskeleton in the modulation of endothelial barrier function, Circ. Res. 51:657–661.PubMedCrossRefGoogle Scholar
  16. 16.
    Welles, S. L., Shepro, D., and Hechtman, H. B., 1985, Vasoactive amines modulate actin cables (stress fibers) and surface area in cultured bovine endothelium, J. Cell. Physiol. 123:337–342.PubMedCrossRefGoogle Scholar
  17. 17.
    Welles, S. L., Shepro, D., and Hechtman, H. B., 1985, Eicosanoid modulation of stress fibers in cultured bovine aortic endothelium, Inflammation 9(4):439–450.PubMedCrossRefGoogle Scholar
  18. 18.
    Mueller, S. N., Rosen, E. M., and Levine, E. M., 1980, Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells, Science 207:889–891.PubMedCrossRefGoogle Scholar
  19. 19.
    Ryan, U. S., Mortara, M., and Whitaker, C., 1980, Methods for microcarrier culture of bovine pulmonary artery endothelial cells avoiding the use of enzymes, Tissue Cell 12:619–635.PubMedCrossRefGoogle Scholar
  20. 20.
    Killackey, J. J., Johnston, M. G., and Movat, H. Z., 1986, Increased permeability of microcarrier-cultured endothelial monolayers in response to histamine and thrombin, J. Pathol. 122:50–61.Google Scholar
  21. 21.
    Williams, S. K., Matthews, M. A., and Wagner, R. C., 1979, Metabolic studies on the micropinocytic process in endothelial cells, Microvasc. Res. 18:175–184.PubMedCrossRefGoogle Scholar
  22. 22.
    Crone, C., 1963, Permeability of capillaries in various organs as determined by use of the indicator diffusion method, Acta Physiol. Scand. 48:292–305.CrossRefGoogle Scholar
  23. 23.
    Sangren, W. C., and Sheppard, C. W., 1953, Mathematical derivation of the exchange of a labelled substance between a liquid flowing in a vessel and an external compartment, Bull. Math. Biophys. 15:387–394.CrossRefGoogle Scholar
  24. 24.
    Chinard, F. P., and Enns, T., 1954, Transcapillary pulmonary exchange of water in the dog, Am. J. Physiol. 178:197.PubMedGoogle Scholar
  25. 25.
    Rowlett, R. D., and Harris, T. R., 1976, A comparative study of organ models and numerical techniques for evaluation of capillary permeability from multiple-indicator data, Math. Biosci. 29:273–298.CrossRefGoogle Scholar
  26. 26.
    Haselton, F. R., Roselli, R. J., Parker, R. E., and Harris, T. R., 1984, An effective diffusivity model of pulmonary capillary exchange: General theory, limiting cases and sensitivity analysis, Math. Biosci. 70:237–263.CrossRefGoogle Scholar
  27. 27.
    Haselton, F. R., Mueller, S. N., and Howell, R. E., 1987, Analysis of chromatography data from an endothelial cell column, Proc. 13th N.E. Bioeng. Confi, Philadelphia.Google Scholar
  28. 28.
    Verderame, M., Alcorta, D., Egnor, M., Smith, K., and Pollack, T., 1980, Cytoskeletal F-actin patterns quantified with fluorescein isothiocyanate phalloidin in normal and transformed cells, Proc. Natl. Acad. Sci. USA 77:6624–6628.PubMedCrossRefGoogle Scholar
  29. 29.
    Osborn, M., and Weber, K., 1984, Actin paracrystal induction by forskolin and by dibutyryl cAMP in CHO cells, Exp. Cell Res. 150:408–418.PubMedCrossRefGoogle Scholar
  30. 30.
    Haselton, F. R., Alexander, J. S., and Blankenship, C., 1990, Permeability Response of Endothelial Monolayers to Changes in Extracellular Calcium, Microcirc. Soc, Washington, D.C.Google Scholar
  31. 31.
    Colden-Stanfeld, M., Schilling, W. P., Ritchie, A. K., Eskin, S. G., Navarro, L. T., and Kunze, D. L., 1987, Bradykinin induced increases in cytosolic Ca++ and ionic currents in cultured bovine aortic endothelial cells, Circ. Res. 61:632–640.CrossRefGoogle Scholar
  32. 32.
    Schilling, W., Ritchie, A. K., Navarro, L. T., and Eskin, S. G., 1987, Bradykinin stimulated Ca++ influx in cultured bovine aortic endothelial cells, Circulation 76:52.CrossRefGoogle Scholar
  33. 33.
    Jaffe, E. A., Grulich, J., Weksler, B. B., Hampel, G., and Watanabe, K., 1987, Correlation between thrombin induced prostacyclin production and inositol triphosphate and cytosolic free calcium levels in cultured human endothelial cells, J. Biol. Chem. 262:8557–8565.PubMedGoogle Scholar
  34. 34.
    Luckhoff, A., and Busse, R., 1986, Increased free calcium in endothelial cells under stimulation with adenine nucleotides, J. Cell. Physiol. 126:414–420.PubMedCrossRefGoogle Scholar
  35. 35.
    Steinberg, S. F., Jaffe, E. A., and Bilezikian, J. P., 1984, Endothelial cells contain beta receptors, Naunyn-Schmiedebergs Arch. Pharmacol. 325:310–313.PubMedCrossRefGoogle Scholar
  36. 36.
    Howell, R. E., Albelda, S. M., Daise, M. L., and Levine, E. M., 1988, Characterization of beta adrenergic receptors in cultured human and bovine endothelial cells, J. Appl. Physiol. 65:1251–1257.PubMedGoogle Scholar
  37. 37.
    Buonassisi, V., and Ventner, J. C., 1976, Hormone and neurotransmitter receptors in an established vascular endothelial cell line, Proc. Natl. Acad. Sci. USA 73:1612–1616.PubMedCrossRefGoogle Scholar
  38. 38.
    Ryan, U. S., Avdonin, P. V., Ya, E., Popov, E. G., Danilov, S. M., and Tkachuk, V. A., 1988, Influence of vasoactive agents on cytoplasmic free calcium in vascular endothelial cells, J. Appl. Physiol. 65(5):2221–2227.PubMedGoogle Scholar
  39. 39.
    Berridge, M. J., and Levine, R. F., 1984, Inositol triphosphate: A novel second messenger in cellular communications, Nature 312:315–321.PubMedCrossRefGoogle Scholar
  40. 40.
    Kraft, A. S., and Anderson, W. B., 1983, Phorbol esters and protein kinase C., Nature 301:621.PubMedCrossRefGoogle Scholar
  41. 41.
    Clark, R. B., and Senney, N., 1976, Regulation of adenylate cyclase from cultured human cell lines by adenosine, J. Biol. Chem. 251:4329–4336.Google Scholar
  42. 42.
    Makarski, J., 1981, Stimulation of cyclic AMP production by vasoactive agents in cultured bovine aortic and pulmonary artery endothelial cells, In Vitro 17(50):450–457.PubMedCrossRefGoogle Scholar
  43. 43.
    Seamon, K. B., and Daly, J. W., 1986, Forskolin: Its biological and chemical properties, Adv. Cyclic Nucleotide Res. 20:3–138.Google Scholar
  44. 44.
    Wong, M. K. K., and Gottlieb, A. I., 1986, Endothelial cell monolayer integrity. I. Characterization of dense peripheral band of microfilaments, Arteriosclerosis 6:212–219.PubMedCrossRefGoogle Scholar
  45. 45.
    Europe-Finner, A. N., and Newell, P.C., 1986, Inositol 1,4,5 triphosphate and calcium stimulation of actin polymerization in Dictyostelium discoideum, J. Cell Sci. 82:41–51.PubMedGoogle Scholar
  46. 46.
    Schliwa, M., Nakamura, T., Porter, K. R., and Eutenever, U., 1984, A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells, J. Cell Biol. 99:1045–1059.PubMedCrossRefGoogle Scholar
  47. 47.
    Bentzel, C. J., Hainar, B., Ho, S., Hui, S. W., Adelman, A., Agnastopoules, T., and Bennedetti, K. L., 1980, Cytoplasmic regulation of tight junction permeability: Effect of plant cytokines, Am. J. Physiol. 239: C75–C89.Google Scholar
  48. 48.
    Coluccio, L. M., and Tilney, L. G., 1984, Phalloidin enhances actin assembly by preventing monomer dissociation, J. Cell Biol. 99:529–535.PubMedCrossRefGoogle Scholar
  49. 49.
    Shasby, D. M., Shasby, S. S., and Peach, M. J., 1983, Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Role of oxygen radicals and granulocyte adherence, Am. Rev. Respir. Dis. 127(l):72–76.PubMedGoogle Scholar
  50. 50.
    Green, K. J., Geiger, B., Jones, J. C. R., Talian, J. C., and Goldman, R. D., 1987, The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes, J. Cell Biol. 104:1389–1402.PubMedCrossRefGoogle Scholar
  51. 51.
    Bologna, M., Allen, R., and Dulbecco, R., 1986, Organization of cytokeratin bundles by desmosomes in rat mammary cells, J. Cell Biol. 102:560–567.PubMedCrossRefGoogle Scholar
  52. 52.
    Shasby, D. M., and Shasby, S. S., 1986, Effects of calcium on transendothelial albumin transfer and electrical resistance, J. Appl. Physiol. 60(l):71–79.PubMedGoogle Scholar
  53. 53.
    Kelly, C., D’Amore, P., Hechtman, H. B., and Shepro, D., 1988, Vasoactive hormones and cAMP affect pericyte contraction and stress fibers in vitro, J. Musc. Res. Cell Motil. 9:184–194.CrossRefGoogle Scholar
  54. 54.
    Morel, N., Dodge, A., Patton, W. F., and Shepro, D., 1990, Pulmonary microvascular endothelial cell contractility on silicone rubber substrates, J. Cell. Physiol. in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • F. R. Haselton
    • 1
  • J. S. Alexander
    • 1
  • S. N. Mueller
    • 2
  • A. P. Fishman
    • 3
  1. 1.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Coriell Institute for Medical ResearchCamdenUSA
  3. 3.Cardiovascular-Pulmonary Division, Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations