Dysfunction of the Release of Endothelium-Derived Relaxing Factor

  • Thomas F. Lüscher
  • Paul M. Vanhoutte


Due to its strategic anatomical position between the circulating blood and vascular smooth muscle cells, the endothelium is a primary target for injuries such as hypertension, hyperlipidemia, diabetes, and ischemia (Fig. 1).1 Although it has been known for years that endothelial cells undergo morphological changes under these conditions, the functional alterations have only been characterized recently. As the endothelium plays a protective role in the circulation under physiological conditions by releasing endothelium-derived relaxing factor (which is a vasodilator and inhibitor of platelet function; for review see Refs. 1, 2), functional alterations of endothelial cells may be an important step in the pathogenesis of cardiovascular disease.


Leave Anterior Descend Saphenous Vein Sodium Nitroprusside Internal Mammary Artery Human Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furchgott, R. F., and Vanhoutte, P. M., 1989, Endothelium-derived relaxing and contracting factors, FASEB J. 3:2007–2018.PubMedGoogle Scholar
  2. 2.
    Lüscher, T. F., and Vanhoutte, P. M., 1990, The Endothelium: Modulator of Cardiovascular Function, CRC Press, Boca Raton, Fla.Google Scholar
  3. 3.
    Vanhoutte, P. M., and Shimokawa, H., 1989, Endothelium-derived relaxing factor and coronary vasospasm, Circulation 80:1–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Shimokawa, H., Aarhus, L. L., and Vanhoutte, P. M., 1987, Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin, Circ. Res. 61:256–270.PubMedCrossRefGoogle Scholar
  5. 5.
    Shimokawa, H., Flavahan, N. A., and Vanhoutte, P. M., 1989, Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium-removal in porcine coronary arteries, Circ. Res. 65:740–753.PubMedCrossRefGoogle Scholar
  6. 6.
    Shimokawa, H., and Vanhoutte, P. M., unpublished observation.Google Scholar
  7. 7.
    Loop, F. D., Lytle, B. W., Cosgrove, D. M., Stewart, R. W., Goorastic, M., Williams, G. W., Golding, L. A. R., Gill, C. G., Taylor, P.C., Sheldon, W. C., and Proudfit, W. L., 1986, Influence of the internal mammary-artery graft on 10-year survival and other cardiac events, N. Engl. J. Med. 314:1–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang, Z., and Lüscher, T. F., 1989, Endothelium-dependent regulatory mechanisms in human coronary bypass grafts: Possible clinical implications, Z. Kardiol. 78(Suppl. 6):80–84.PubMedGoogle Scholar
  9. 9.
    Lüscher, T. F., Diederich, D., Siebenmann, R., Lehmann, K., Stulz, P., von Segesser, L., Yang, Z., Turina, M., Grädel, E., Weber, E., and Bühler, F.R., 1988, Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts, N. Engl. J. Med. 319:462–467.PubMedCrossRefGoogle Scholar
  10. 10.
    Schoeffter, P., Dion, R., and Godfraind, T., 1988, Modulatory role of the vascular endothelium in the contractility of human isolated internal mammary artery, Br. J. Pharmacol. 95:531–543.PubMedCrossRefGoogle Scholar
  11. 11.
    Thulesius, O., Ugaily-Thulesius, L., Neglen, P., and Shuhaiber, H., 1988, The role of the endothelium in the control of venous tone: Studies on isolated human veins, Clin. Physiol. 8:359–366.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang, Z., Diederich, D., Schneider, K., Siebenmann, R., Stulz, P., von Segesser, L., Turina, M., Bühler, F. R., and Lüscher, T. F., 1989, Endothelium-derived relaxing factor and protection against contractions induced by histamine and serotonin in the internal mammary artery and saphenous vein, Circulation 80:1041–1048.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, Z., von Segesser, L., Bauer, E., Stulz, P., Turina, M., and Lüscher T. F., 1991, Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein, Circ. Res. 68:52–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang, Z., Stulz, P., von Segesser, L., Bauer, E., Turina, M., and Lüscher, T. F., 1991, Different platelet-vessel wall interaction in arterial and venous coronary bypass grafts, Lancet 337:939–943.PubMedCrossRefGoogle Scholar
  15. 15.
    Lüscher, T. F., Richard, V., and Yang, Z., 1990, Interaction between endothelium-derived nitric oxide and SIN-1 in human and porcine blood vessels, J. Cardiovasc. Pharmacol. 14(Suppl. 11):76–80.Google Scholar
  16. 16.
    Subramanian, V. A., Hermandez, Y., Tack-Goldman, K., Grabowski, E. F., and Weksler, B. B., 1986, Prostacyclin production by internal mammary artery as a factor in coronary artery bypass grafts, Surgery 100:376–383.PubMedGoogle Scholar
  17. 17.
    Miller, V. M., Reigel, M. M., Hollier, L. H., and Vanhoutte, P.M., 1987, Endothelium-dependent responses in autogenous femoral veins grafted into the arterial circulation of the dog, J. Clin. Invest. 80:1350–1357.PubMedCrossRefGoogle Scholar
  18. 18.
    Ku, D. D., 1988, Personal communication, Copper Mountain FASEB Summer Conference on “Endothelium and Cardiovascular Function”, Copper Mountain Co., USA.Google Scholar
  19. 19.
    Bush, H. L., Jr., Jakubowski, J. A., Curl, G. R., Deykin, D., and Nabseth, D. C., 1986, The natural history of endothelial structure and function in arterialized vein grafts, J. Vasc. Surg. 3:204–215.PubMedGoogle Scholar
  20. 20.
    Fuster, V., and Chesebro, J. H., 1986, Role of platelets and platelet inhibitors in aortocoronary artery vein-graft disease, Circulation 73:227–232.PubMedCrossRefGoogle Scholar
  21. 21.
    Dudel, C., and Förstermann, U., 1988, Gossypol attenuates selectively the blood pressure lowering effect of endothelium-dependent vasodilators in the rabbit in vivo, Eur. J. Pharmacol. 145:217–221.PubMedCrossRefGoogle Scholar
  22. 22.
    Rees, D. D., Palmer, R. M. J., and Moncada, S., 1989, The role of endothelium-derived nitric oxide in the regulation of blood pressure, Proc. Natl. Acad. Sci. USA 86:3375–3378.PubMedCrossRefGoogle Scholar
  23. 23.
    Savitsky, J. P., Doczi, J., Black, J., and Arnold, J. D., 1978, A clinical safety trial of stroma-free hemoglobin, Clin. Pharmacol. Ther. 23:73–80.PubMedGoogle Scholar
  24. 24.
    Dohi, Y., Thiel, M., Bühler, F.R., and Lüscher, T. F., 1990, Activation of endothelial L-arginine pathway in resistance arteries: Effect of age and hypertension, Hypertension 15:170–179.CrossRefGoogle Scholar
  25. 25.
    Lüscher, T. F., Romero, J. C., and Vanhoutte, P.M., 1986, Bioassay of endothelium-derived vasoactive substances in the aorta of normotensive and spontaneously hypertensive rats, J. Hypertension 4(Suppl. 6): 81–83.Google Scholar
  26. 26.
    Otsuko, Y., DiPiero, A., Hirt, E., Brennaman, B., and Lockette, W., 1988, Vascular relaxation and cGMP in hypertension, Am. J. Physiol. 254:H163–H169.Google Scholar
  27. 27.
    Shirasaki, Y., Kolm, P., Nickols, G. A., and Lee, T. J.-F., 1988, Endothelial regulation of cyclic GMP and vascular responses in hypertension, J. Pharmacol. Exp. Ther. 245:53–58.PubMedGoogle Scholar
  28. 28.
    Konishi, M., and Su, C., 1983, Role of endothelium in dilator responses of spontaneously hypertensive rat arteries, Hypertension 5:881–886.PubMedCrossRefGoogle Scholar
  29. 29.
    Lockette, W. E., Otsuha, Y., and Carretero, O. A., 1986, Endothelium-dependent relaxation in hypertension, Hypertension 8(Suppl. II):61–66.Google Scholar
  30. 30.
    Lüscher, T. F., Raij, L., and Vanhoutte, P.M., 1987, Endothelium-dependent responses in normotensive and hypertensive Dahl rats, Hypertension 9:157–163.PubMedCrossRefGoogle Scholar
  31. 31.
    Lüscher, T. F., Vanhoutte, P. M., 1986, Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat, Hypertension 8:344–348.PubMedCrossRefGoogle Scholar
  32. 32.
    Miller, M. J. S., Pinto, A., and Mullane, K. M., 1987, Impaired endothelium-dependent relaxations in rabbits subjected to aortic coarctation hypertension, Hypertension 10:164–170.PubMedCrossRefGoogle Scholar
  33. 33.
    Sim, M. K., and Singh, M., 1987, Decreased responsiveness of the aortae of hypertensive rats to acetylcholine, histamine and noradrenaline, Br. J. Pharmacol. 90:147–150.PubMedCrossRefGoogle Scholar
  34. 34.
    Van de Voorde, J., Cuvelier, C., and Leusen, I., 1984, Endothelium-dependent relaxation effects in aorta from hypertensive rats, Arch. Int. Physiol. Biochem. 92:P10–P11.CrossRefGoogle Scholar
  35. 35.
    Van de Voorde, J., and Leusen, I., 1984, Endothelium-dependent and independent relaxation effects on aorta preparations of renal hypertensive rats, Arch. Int. Physiol. Biochem. 92:P35–P36.CrossRefGoogle Scholar
  36. 36.
    Van de Voorde, J., and Leusen, I., 1986, Endothelium-dependent and independent relaxation of aortic rings from hypertensive rats, Am. J. Physiol. 250:H711–H717.Google Scholar
  37. 37.
    Winquist, R. J., Bunting, P.B., Baskin, E. P., and Wallace, A. A., 1984, Decreased endothelium-dependent relaxation in New Zealand genetic hypertensive rats, J. Hypertension 2:536–541.CrossRefGoogle Scholar
  38. 38.
    Lüscher, T. F., Diederich, D., Vanhoutte, P. M., Weber, E., and Bühler, F. R., 1988, Endothelium-dependent responses in the common carotid and renal artery of normotensive and spontaneously hypertensive rats, Hypertension 11:573–578.PubMedCrossRefGoogle Scholar
  39. 39.
    Hongo, K., Nakagomi, T., Kassell, N. F., Sasaki, T., Lehman, M., Vollmer, D. G., Tsukahara, T., Ogawa, H., and Torner, J., 1988, Effects of aging and hypertension on endothelium-dependent vascular relaxation in rat carotid artery, Stroke 19:892–897.PubMedCrossRefGoogle Scholar
  40. 40.
    Carvalho, M. H. C., Scivoletto, R., Fortes, Z. B., Nigro, D., and Cordellini, S., 1987, Reactivity of aorta and mesenteric microvessels to drugs in spontaneously hypertensive rats: Role of the endothelium, J. Hypertension 5:377–382.CrossRefGoogle Scholar
  41. 41.
    De Mey, J. G., and Gray, S. D., 1985, Endothelium-dependent reactivity in resistance vessels, Prog. Appl. Microcirc. 88:181–187.Google Scholar
  42. 42.
    Diederich, D., Yang, Z., Bühler, F. R., and Lüscher, T. F., 1990, Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve the cyclooxygenase pathway, Am. J. Physiol. 258:H445–H451.Google Scholar
  43. 43.
    Lüscher, T. F., Aarhus, L. L., and Vanhoutte, P. M., 1990, Indomethacin enhances the impaired endothelium-dependent relaxations in small mesenteric arteries of the spontaneously hypertensive rat, Am. J. Hypertension 3:55–58.CrossRefGoogle Scholar
  44. 44.
    Tesfamariam, B., and Halpern, W., 1988, Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats, Hypertension 11:440–444.PubMedCrossRefGoogle Scholar
  45. 45.
    Mayhan, W. G., 1989, Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus, Am. J. Physiol. 256:H621–H625.Google Scholar
  46. 46.
    Mayhan, W. G., Faraci, F.M., and Heistad, D. D., 1987, Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension, Am. J. Physiol. 253:H1435–H1440.Google Scholar
  47. 47.
    Mayhan, W. G., Faraci, F.M., and Heistad, D. D., 1989, Responses of cerebral arterioles to adenosine diphosphate, serotonin and the thromboxane analogue U-46619 during chronic hypertension, Hypertension 12(Suppl. 6):556–561.CrossRefGoogle Scholar
  48. 48.
    Linder, L., Kiowski, W., Bühler, F.R., and Lüscher, T. F., 1990, Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo, Circulation 81:1762–1767.PubMedCrossRefGoogle Scholar
  49. 49.
    Panza, J. A., Quyyumi, A. A., Brush, J. E., and Epstein, S. E., 1990, Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension, N. Engl. J. Med. 323:22.PubMedCrossRefGoogle Scholar
  50. 50.
    Lüscher, T. F., Raij, L., and Vanhoutte, P. M., 1987, Effect of hypertension and its reversal on endothelium-dependent relaxations in the rat aorta, J. Hypertension 5(Suppl. 5):153–155.Google Scholar
  51. 51.
    Lüscher, T. F., Vanhoutte, P. M., and Raij, L., 1987, Antihypertensive therapy normalizes endothelium-dependent relaxations in salt-induced hypertension of the rat, Hypertension 9(Suppl. III):193–197.CrossRefGoogle Scholar
  52. 52.
    Gray, S. D., and De Mey, J. G., 1985, Vascular reactivity in neonatal spontaneously hypertensive rats, Prog. Appl. Microcirc. 8:173–180.Google Scholar
  53. 53.
    Lüscher, T. F., and Vanhoutte, P. M., 1986, Endothelium-dependent responses to aggregating platelets and serotonin in spontaneously hypertensive rats, Hypertension 8(Suppl. II):55–60.CrossRefGoogle Scholar
  54. 54.
    Amstein, R., Fetkovska, N., Lüscher, T. F., Kiowski, W., and Bühler, F. R., 1988, Age and the platelet serotonin vasoconstrictor axis in essential hypertension, J. Cardiovasc. Pharmacol. U(Suppl. 1):35–40.CrossRefGoogle Scholar
  55. 55.
    De Clerck, F., 1986, Blood platelets in human essential hypertension, Agents Actions 18:563–580.PubMedCrossRefGoogle Scholar
  56. 56.
    Fetkovska, N., Amstein, R., Ferracin, F., Regenass, M., Pletscher, A., and Bühler, F.R., 1990, 5-Hydroxy-tryptamine kinetics and activation of blood platelets in patients with essential hypertension, Hypertension 15:267–273.PubMedCrossRefGoogle Scholar
  57. 57.
    Kamal, L. A., Quan-Bui, K. H. L., and Meyer, P., 1984, Decreased uptake of H3-serotonin and endogenous content of serotonin in blood platelets in hypertensive patients, Hypertension 6:568–573.PubMedCrossRefGoogle Scholar
  58. 58.
    Baudouin-Legros, M., Dard, B., and Guicheney, P., 1986, Hyperreactivity of platelets from spontaneously hypertensive rats, Hypertension 8:694–699.PubMedCrossRefGoogle Scholar
  59. 59.
    Valtier, D., Guicheney, P., Baudoin-Legros, M., and Meyer, P., 1986, Platelets in human essential hypertension: In vitro hyperreactivity to thrombin, J. Hypertension 4:551–555.CrossRefGoogle Scholar
  60. 60.
    Nara, Y., Kihara, M., Mano, M., Horie, R., and Yamori, Y., 1984, Dietary effect on platelet aggregation in men with and without a family history of essential hypertension, Hypertension 6:339–343.PubMedCrossRefGoogle Scholar
  61. 61.
    Hoeffner, U., and Vanhoutte, P.M., 1990, Increases in flow reduce the release of endothelium-derived relaxing factor in the aorta of normotensive and spontaneously hypertensive rats, Am. J. Physiol. 256:H828.Google Scholar
  62. 62.
    Kato, T., Iwama, Z., Okumura, K., Hashimoto, H., Ito, T., and Satake, T., 1990, Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat, Hypertension 15:475–481.PubMedCrossRefGoogle Scholar
  63. 63.
    Auch-Schwelk, W., Katusic, Z. S., and Vanhoutte, P. M., 1990, Thromboxane A2-receptor antagonists inhibit endothelium-dependent contractions, Hypertension 15:699–703.PubMedCrossRefGoogle Scholar
  64. 64.
    Cocks, T. M., Manderson, J. A., Mosse, P.R.L., Campbell, G. R., and Angus, J. A., 1987, Development of a large fibromuscular intimai thickening does not impair endothelium-dependent relaxations in the rabbit carotid artery, Blood Vessels 24:192–200.PubMedGoogle Scholar
  65. 65.
    Folkow, B., 1982, Physiological aspects of primary hypertension, Physiol. Rev. 62:347–504.PubMedGoogle Scholar
  66. 66.
    Shirasaki, Y., Su, C., Lee, T. J.-F., Kolm, P., Cline, W. H., Jr., and Nickols, G. A., 1986, Endothelial modulation of vascular relaxation to nitrovasodilators in aging and hypertension, J. Pharmacol. Exp. Ther. 239:861–866.PubMedGoogle Scholar
  67. 67.
    Arbogast, B. W., Berry, D. L., and Newell, C. L., 1984, Injury of arterial endothelial cells in diabetic, sucrose-fed and aged rats, Atherosclerosis 51:31–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Steiner, G., 1981, Diabetes and atherosclerosis, Diabetes 30 (Suppl. 2):1–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Harris, K. H., and MacLeod, K. M., 1988, Influence of the endothelium on contractile responses of arteries from diabetic rats, Eur. J. Pharmacol. 153:55–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Wakabayashi, I., Hatake, K., Kimura, N., Kakishita, E., and Nagai, K., 1987, Modulation of vascular tonus by the endothelium in experimental diabetes, Life Sci. 40:643–648.PubMedCrossRefGoogle Scholar
  71. 71.
    Gebremedhin, D., Koltai, M. Z., Pogatsa, G., Magyar, K., and Hadhazy, P., 1987, Differential contractile responsiveness of femoral arteries from healthy and diabetic dogs: Role of the endothelium, Arch. Int. Pharmacodyn. 288:100–108.PubMedGoogle Scholar
  72. 72.
    Gebremedhin, D., Koltai, M. Z., Pogatsa, G., Magyar, K., and Hadhazy, P., 1988, Influence of experimental diabetes on the mechanical responses of canine coronary arteries: Role of endothelium, Cardiovasc. Res. 22:537–544.PubMedCrossRefGoogle Scholar
  73. 73.
    Durante, W., Sen, A. K., and Sunahara, F. A., 1988, Impairment of endothelium-dependent relaxation in aortae from spontaneously diabetic rats, Br. J. Pharmacol. 94:463–468.PubMedCrossRefGoogle Scholar
  74. 74.
    Tesfamariam, B., Jakubowski, J. A., and Cohen, R. A., 1989, Contraction of diabetic rabbit aorta due to endothelium-derived PGH2/TXA2, Am. J. Physiol. 257:H1327–H1333.Google Scholar
  75. 75.
    Fortes, Z. B., Leme, J. G., and Scivoletto, R., 1983, Influence of diabetes on the reactivity of mesenteric microvessels to histamine, bradykinin and acetylcholine, Br. J. Pharmacol. 78:39–48.PubMedCrossRefGoogle Scholar
  76. 76.
    Fortes, Z. B., Leme, J. G., and Scivoletto, R., 1983, Vascular reactivity in diabetes mellitus: Role of the endothelial cell, Br. J. Pharmacol. 79:771–781.PubMedCrossRefGoogle Scholar
  77. 77.
    Oyama, Y., Kawasaki, H., Hattori, Y., and Kanno, M., 1986, Attenuation of endothelium-dependent relaxation in aorta from diabetic rat, Eur. J. Pharmacol. 131:75–78.CrossRefGoogle Scholar
  78. 78.
    Pieper, G. M., and Gross, G. J., 1988, Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta, Am. J. Physiol. 255:H825–H833.Google Scholar
  79. 79.
    Cohen, R. A., and Zitnay, K. M., 1986, Augmented adrenergic responses of diabetic carotid arteries are dependent on the endothelium [Abstract], Circulation 74(Suppl. II):413.Google Scholar
  80. 80.
    De Tejada, I. S., Goldstein, I., Azadzoi, K., Krane, R. J., and Cohen, R. A., 1989, Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence, N. Engl. J. Med. 320:1025–1030.CrossRefGoogle Scholar
  81. 81.
    Takiguchi, Y., Satoh, N., Hashimoto, H., and Nakashima, M., 1988, Changes in vascular reactivity in experimental diabetic rats: Comparison with hypothyroid rats, Blood Vessels 25:250–260.PubMedGoogle Scholar
  82. 82.
    Fortes, Z. B., Leme, J. G., and Scivoletto, R., 1984, Vascular reactivity in diabetes mellitus: Possible role of insulin on the endothelial cell, Br. J. Pharmacol. 83:635–643.PubMedCrossRefGoogle Scholar
  83. 83.
    Bhardwaj, R., and Moore, P. K., 1988, Increased vasodilator response to acetylcholine of renal blood vessels from diabetic rats, J. Pharm. Pharmacol. 40:739–742.PubMedCrossRefGoogle Scholar
  84. 84.
    Andrews, H. E., Bruckdorfer, K. R., Dunn, R. C., and Jacobs, M., 1987, Low-density lipoproteins inhibit endothelium-dependent relaxation in rabbit aorta, Nature 327:237–239.PubMedCrossRefGoogle Scholar
  85. 85.
    Boulanger, C., Bühler, F. R., and Lüscher, T. F., 1989, Low density lipoproteins impair the release of endothelium-derived relaxing factor from cultured porcine endothelial cells [Abstract] Eur. Heart J. 10:331.Google Scholar
  86. 86.
    Kugiyama, K., Kerns, S. A., Morrisett, J. D., Roberts, R., and Henry, P. D., 1990, Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins, Nature 344:160–162.PubMedCrossRefGoogle Scholar
  87. 87.
    Simon, B. C., Cunningham, L. D., and Cohen, R. A., 1990, Oxidized low-density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery, J. Clin. Invest. 86: 75–79.PubMedCrossRefGoogle Scholar
  88. 88.
    Tanner, F.C., Boulanger, C., and Lüscher, T. F., 1990, Oxidized low-density lipoproteins reduce relaxations to serotonin in porcine coronary arteries: Role of endothelium-derived nitric oxide, Proceedings of the Second Iuphar Satellite Meeting on Serotonin, Basel, p. 129.Google Scholar
  89. 89.
    Cohen, R. A., Zitnay, K. M., Haudenschild, C. C., and Cunningham, L. D., 1988, Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries, Circ. Res. 63:903–910.PubMedCrossRefGoogle Scholar
  90. 90.
    Shimokawa, H., and Vanhoutte, P.M., 1989, Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis, Circ. Res. 64:900–914.PubMedCrossRefGoogle Scholar
  91. 91.
    Shimokawa, H., and Vanhoutte, P. M., 1989, Hypercholesterolemia causes generalized impairment of endothelium-dependent relaxation to aggregating platelets in porcine arteries, J. Amer. Coll. Cardiol. 13:1402.CrossRefGoogle Scholar
  92. 92.
    Shimokawa, H., Kim P., and Vanhoutte, P.M., 1988, Endothelium-dependent relaxation to aggregating platelets in isolated basilar arteries of control and hypercholesterolemic pigs, Circ. Res. 63:604–612.PubMedCrossRefGoogle Scholar
  93. 93.
    Freiman, P. C., Mitchell, G. G., Heistad, D. D., Armstrong, M. L., and Harrison, D. G., 1986, Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates, Circ. Res. 58:783–789.PubMedCrossRefGoogle Scholar
  94. 94.
    Bossaller, C., Yamamoto, H., Lichtlen, P.R., and Henry, P. D., 1987, Impaired cholinergic vasodilation in the cholesterol-fed rabbit in vivo, Basic Res. Cardiol. 82:396–404.PubMedCrossRefGoogle Scholar
  95. 95.
    Chappell, S. P., Griffith, T. M., Henderson, T. M., and Lewis, A. H., Influence of cholesterol feeding on endothelium-dependent vasomotor response in rabbit aortic strips [Abstract], Br. J. Pharmacol. 85:266PGoogle Scholar
  96. 96.
    Diederich, D., Bühler, F.R., Yang, Z., Weber, E., and Lüscher, T. F., 1988, Impact of atherosclerosis and hypertension on endothelium-dependent relaxations in the renal and carotid artery [Abstract], Am. J. Hypertension 1:14A.Google Scholar
  97. 97.
    Habib, J. B., Bossaller, C., Wells, S., Williams, C., Morrisett, J. D., and Henry, P. D., 1986, Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200–110, Circ. Res. 58:305–309.PubMedCrossRefGoogle Scholar
  98. 98.
    Jayakody, L., Senaratne, M., Thomson, A., and Kappagoda, T., 1987, Endothelium-dependent relaxation in experimental atherosclerosis, Circ. Res. 60:251–264.PubMedCrossRefGoogle Scholar
  99. 99.
    Sreeharan, N., Jayakody, R. L., Senaratne, M. P. J., Thomson, A. B. R., and Kappagoda, C. T., 1986, Endothelium-dependent relaxation and experimental atherosclerosis in the rabbit aorta, Can. J. Physiol. Pharmacol. 64:1451–1453.PubMedCrossRefGoogle Scholar
  100. 100.
    Verbeuren, T. J., Jordaens, F. H., Zonnekeyn, L. I., VanHove, C. E., Coene, M.-C., and Herman, A. G., 1986, Effect of hypercholesteremia in vascular reactivity in the rabbit: I. Endothelium-dependent relaxations in isolated arteries of control and hypercholesteremic rabbits, Circ. Res. 58:552–564.PubMedCrossRefGoogle Scholar
  101. 101.
    Wright, C. E., and Angus, J. A., 1986, Effects of hypertension and hypercholesteremia on vasodilatation in the rabbit, Hypertension 8:361–371.PubMedCrossRefGoogle Scholar
  102. 102.
    Lüscher, T. F., Richard, V., Tschudi, M., Yang, Z., and Boulanger, C., 1989, Endothelial control of vascular tone in large and small coronary arteries, J. Am. Coll. Cardiol. 15:519–527.CrossRefGoogle Scholar
  103. 103.
    Förstermann, U., Mügge, A., Alheid, U., Haverich, A., and Frölich, J. C., 1988, Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries, Circ. Res. 62:185–190.PubMedCrossRefGoogle Scholar
  104. 104.
    Förstermann, U., Mügge, A., Bode, S. M., and Frölich, J. C., 1988, Response of human coronary arteries to aggregating platelets: Importance of endothelium-derived relaxing factor and prostanoids, Circ. Res. 63:306–312.PubMedCrossRefGoogle Scholar
  105. 105.
    Förstermann, U., Mügge, A., and Frölich, J. C., 1986, Endothelium-dependent relaxation of human epicardial coronary arteries: Frequent lack of effect of acetylcholine, Eur. J. Pharmacol. 128:277–281.PubMedCrossRefGoogle Scholar
  106. 106.
    Thorn, S., Hughes, A., and Sever, P. S., 1988, Endothelium dependent responses in human arteries, in: Relaxing and Contracting Factors: Biological and Clinical Research (P M. Vanhoutte, ed.), Humana Press, Clifton, N.J., pp. 511–528.Google Scholar
  107. 107.
    Ludmer, P. L., Selwyn, A. P., Shook, T. L., Wayne, R. R., Mudge, G. H., Alexander, R. W., and Ganz, R., 1986, Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries, N. Engl. J. Med. 315:1046–1051.PubMedCrossRefGoogle Scholar
  108. 108.
    Maseri, A., L’Abbate, A., Baroldi, G., Chierchia, S., Marzilli, M., Ballestra, A. M., Severi, S., Parodi, O., Biagini, A., Distante, A., and Pesola, A., 1978, Coronary vasospasm as a possible cause of myocardial infarction: A conclusion derived from the study of “preinfarction” angina, N. Engl. J. Med. 299:1271–1277.PubMedCrossRefGoogle Scholar
  109. 109.
    Lüscher, T. F., 1990, Endothelin: Key to coronary spasm? Circulation 83:701–706.CrossRefGoogle Scholar
  110. 110.
    Cohen, R. A., Zitnay, K. M., and Weisbrod, R. M., 1987, Accumulation of 5-hydroxytryptamine leads to dysfunction of adrenergic nerves in canine coronary artery following intimai damage in vivo, Circ. Res. 61:829–833.PubMedCrossRefGoogle Scholar
  111. 111.
    Kaski, J. C., Crea, F., Meran, D., Rodriguez, L., Araulo, L., Chierchia, S., Davies, G., and Maseri, A., 1986, Local coronary supersensitivity to diverse vasoconstrictive stimuli in patients with variant angina, Circulation 74:1255–1265.PubMedCrossRefGoogle Scholar
  112. 112.
    Shimokawa, H., Flavahan, N. A., Shepherd, J. T., and Vanhoutte, P. M., 1989, Endothelium-dependent inhibition of ergonovine-induced contraction is impaired in porcine coronary arteries with regenerated endothelium, Circulation 80:643–650.PubMedCrossRefGoogle Scholar
  113. 113.
    Kawachi, Y., Tomoike, H., Maruoka, Y., Kikuchi, Y., Araki, H., Ishii, Y., Tanaka, K., and Nakamura, M., 1984, Selective hypercontraction caused by ergonovine in the canine coronary artery under conditions of induced atherosclerosis, Circulation 69:441–450.PubMedCrossRefGoogle Scholar
  114. 114.
    Freedman, S. B., Chierchia, S., Rodriquez-Plaza, L., Bugiardini, R., Smith, G., and Maseri, A., 1984, Ergonovine-induced myocardial ischemia: No role for serotonergic receptors? Circulation 70:178–183.PubMedCrossRefGoogle Scholar
  115. 115.
    Cohen, R. A., 1986, Contractions of isolated canine coronary arteries resistant to S2-serotonergic blockade, J. Pharmacol. Exp. Ther. 237:548–552.PubMedGoogle Scholar
  116. 116.
    Toda, N., 1987, Mechanism of histamine actions in human coronary arteries, Circ. Res. 61:280–286.PubMedCrossRefGoogle Scholar
  117. 117.
    Vigorito, C., Giordano, A., De Caprio, L., Vitale, D., Ferrara, N., Tuccillo, B., Maurea, N., Rispoli, M., and Rengo, F., 1986, Direct coronary vasodilator effects of intracoronary histamine administration in humans, J. Cardiovasc. Pharmacol. 6:933–939.CrossRefGoogle Scholar
  118. 118.
    Kalsner, S., and Richards, R., 1984, Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: A mechanism for coronary spasm, Science 256:H720–H725.Google Scholar
  119. 119.
    Shimokawa, H., Tomoike, H., Nabeyama, S., Yamamoto, H., Araki, H., Nakamura, M., Ishii, Y., and Tanaka, K., 1983, Coronary artery spasm induced in atherosclerotic miniature swine, Science 221:560–562.PubMedCrossRefGoogle Scholar
  120. 120.
    Forman, M. B., Oates, J. A., Robertson, D., Robertson, R. M., Roberts, L. J., and Virmani, R., 1985, Increased adventitial mast cells in a patient with coronary spasm, N. Engl. J. Med. 313:1138–1141.PubMedCrossRefGoogle Scholar
  121. 121.
    Yanagisawa, M., Kurihara, H., Kimura, S., Mitsui, Y., Kobayashi, M., Watanabe, T. X., and Masaki, T., 1988, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature 332:411–415.PubMedCrossRefGoogle Scholar
  122. 122.
    Lüscher, T. F., Yang, Z., Tschudi, M., von Segesser, L., Stulz, P., Boulanger, C., Siebenmann, R., Turina, M., and Bühler, F.R., 1990, Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins, Circ. Res. 66:1088–1094.PubMedCrossRefGoogle Scholar
  123. 123.
    Yang, Z., Richard, V., von Segesser, L., Bauer, E., Stulz, P., Turina, M., and Lüscher, T. F., 1990, Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries: A new mechanism of vasospasm? Circulation 82:188–195.PubMedCrossRefGoogle Scholar
  124. 124.
    Suzuki, H., Matsumoto, H., Kitada, C., Yanagisawa, M., Miyauchi, T., Masaki, T., and Fujino, M., 1989, Immunoreactive endothelin-1 in plasma detected by a sandwich-type enzyme immunoassay, J. Cardiovasc. Pharmacol. 13(Suppl. 5):151–152.CrossRefGoogle Scholar
  125. 125.
    Toyo-Oka, T., Aizawa, T., Suzuki, N., Hirata, Y., Miyauchi, T., Yanagisawa, M., Masaki, T., and Sugimoto, T., 1991, The increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris, Circulation 83:476–483.PubMedCrossRefGoogle Scholar
  126. 126.
    Rubanyi, G. M., and Vanhoutte, P. M., 1986, Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor, Am. J. Physiol. 250:H822–H827.Google Scholar
  127. 127.
    Rubanyi, G. M., and Vanhoutte, P. M., 1985, Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium, J. Physiol (London) 364:45–56.Google Scholar
  128. 128.
    Fitzgerald, D. J., Roy, L., Catella, F., and FitzGerald, G. A., 1986, Platelet activation in unstable coronary artery disease, N. Engl. J. Med. 315:983–989.PubMedCrossRefGoogle Scholar
  129. 129.
    Hirsh, P. D., Hillis, L. D., Campell, W. B., Firth, B. G., and Willerson, J. T., 1981, Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease, N. Engl. J. Med. 304:687–691.CrossRefGoogle Scholar
  130. 130.
    Theroux, P., Latour, J.-G., Leger-Gauthier, C., and De Lara, J., 1987, Fibrinopeptide A and platelet factor levels in unstable angina, Circulation 75:156–162.PubMedCrossRefGoogle Scholar
  131. 131.
    Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F., 1985, Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins, J. Pharmacol. Exp. Ther. 233:679–685.PubMedGoogle Scholar
  132. 132.
    Fishbein, M. C., Y-Rit, J., and Lando, U., 1980, The relationship of vascular injury to myocardial necrosis after reperfusion, Circulation 62:1274–1280.PubMedCrossRefGoogle Scholar
  133. 133.
    Kloner, R. A., Ganote, C. E., and Jennings, R. B., 1974, The “no-reflow” phenomenon after temporary coronary occlusion in the dog, J. Clin. Invest. 54:1496–1502.PubMedCrossRefGoogle Scholar
  134. 134.
    Engler, R. L., Schmid-Schonbein, G. W., and Pavelec, R. S., 1983, Leukocyte capillary plugging in myocardial ischemia and reperfusion in dogs, Am. J. Pathol. 111:98–111.PubMedGoogle Scholar
  135. 135.
    Mullane, K. M., Read, N., Salmon, J. A., and Moncada, S., 1984, Role of leukocytes in acute myocardial infarction in anesthetized dogs: Relationship to myocardial salvage by anti-inflammatory drugs, J. Pharmacol. Exp. Ther. 228:510–522.PubMedGoogle Scholar
  136. 136.
    Forman, M. B., Puett, D. W., Scott, B. A., Bingham, S. E., Virmani, R., Tantengo, M. V., Light, R. T., Bajaj, A., Price, R., and Friesinger, G., 1987, Preservation of endothelial cell structure and function by intracoronary perfluorochemical in a canine preparation of reperfusion, Circulation 76:469–479.PubMedCrossRefGoogle Scholar
  137. 137.
    Go, L. O., Murry, C. E., Richard, V. J., Weischedel, G. R., Jennings, R. B., and Reimer, K. A., 1988, Myocardial neutrophil accumulation during reperfusion after reversible and irreversible ischemic injury, Am. J. Physiol. 255:H1188–H1198.Google Scholar
  138. 138.
    Ku, D. D., 1982, Coronary vascular reactivity after acute myocardial infarction, Science 218:576–578.PubMedCrossRefGoogle Scholar
  139. 139.
    Mehta, J. L., Nichols, W. W., Donnelly, W. H., Lawson, D. L., and Saldeen, T. G. P., 1989, Impaired canine coronary vasodilator response to acetylcholine and bradykinin after occlusion-reperfusion, Circ. Res. 64: 43–54.PubMedCrossRefGoogle Scholar
  140. 140.
    Nichols, W. W., Mehta, J. L., Donnelly, W. H., Lawson, D., Thompson, L., and ter Riet, M., 1988, Reduction in coronary vasodilator reserve following coronary occlusion and reperfusion in anesthetized dog: Role of endothelium-derived relaxing factor, myocardial neutrophil infiltration and prostaglandins, J. Mol. Cell. Cardiol. 20:943–954.PubMedCrossRefGoogle Scholar
  141. 141.
    Pearson, P. J., Schaff, H. V., and Vanhoutte, P. M., 1990, Long-term impairment of endothelium-dependent relaxations to aggregating platelets after reperfusion injury in canine coronary arteries, Circulation 81:1921 – 1927.PubMedCrossRefGoogle Scholar
  142. 142.
    VanBenthuysen, K. M., McMurtry, I. F., and Horwitz, L. D., 1987, Reperfusion after coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro, J. Clin. Invest. 79:265–274.CrossRefGoogle Scholar
  143. 143.
    Baker, J. E., Felix, C. C., Olinger, G. N., and Kalyanaraman, B., 1988, Myocardial ischemia and reperfusion: Direct evidence for free radical generation by electron spin resonance spectroscopy, Proc. Natl. Acad. Sci. USA 85:2786–2789.PubMedCrossRefGoogle Scholar
  144. 144.
    Simpson, P. J., and Lucchesi, B. R., 1987, Free radicals and myocardial ischemia and reperfusion injury, J. Lab. Clin. Med. 110:13–30.PubMedGoogle Scholar
  145. 145.
    Zweier, J. L., Flaherty, J. T., and Weisfeldt, M. L., 1987, Direct measurement of free radical generation following reperfusion of ischemic myocardium, Proc. Natl. Acad. Sci. USA 84:1404–1408.PubMedCrossRefGoogle Scholar
  146. 146.
    Zweier, J. L., Kuppusamy, P., and Lutty, G. A., 1988, Measurement of endothelial cell free radical generation: Evidence for a central mechanism of free radical injury in postischemic tissues, Proc. Natl. Acad. Sci. USA 85:4046–4050.PubMedCrossRefGoogle Scholar
  147. 147.
    Gryglewski, R. J., Palmer, R. M. J., and Moncada, S., 1986, Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor, Nature 320:454–456.PubMedCrossRefGoogle Scholar
  148. 148.
    Vanhoutte, P. M., and Katusic, Z. S., 1988, Endothelium-derived contracting factor: Endothelin and/or superoxide anion? Trends Pharm. Sci. 9:229–230.PubMedCrossRefGoogle Scholar
  149. 149.
    Mehta, J. L., Nichols, W. W., Saldeen, T. P. G., and Franzini, D., 1988, Protection by superoxide dismutase from reperfusion-induced attenuation of coronary flow reserve [Abstract], Clin. Res. 36:543A.Google Scholar
  150. 150.
    Schinetti, M. L., Sbarbati, R., and Scarlattini, M., 1989, Superoxide production by human umbilical vein endothelial cells in an anoxia-reoxygenation model, Cardiovasc. Res. 23:76–80.PubMedCrossRefGoogle Scholar
  151. 151.
    Kassell, N. F., Sasaki, T., Colohan, A. R. T., and Nazar, G. B., 1985, Cerebral vasospasm following aneurysmal subarachnoid hemorrhage, Stroke 16:562–572.PubMedCrossRefGoogle Scholar
  152. 152.
    Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F., 1985, Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins, J. Pharmacol. Exp. Ther. 233:679–685.PubMedGoogle Scholar
  153. 153.
    Watanabe, K., Ishida, T., Yoshitomi, F., and Tanaka, K., 1984, Fibrinogen degradation products influence PGI2 synthesis by cultured porcine aortic endothelial and smooth muscle cells, Atherosclerosis 51:151–161.PubMedCrossRefGoogle Scholar
  154. 154.
    Toda, N., 1988, Hemolysate inhibits cerebral artery relaxation, J. Cerebral Blood Flow Metab. 8:46–53.CrossRefGoogle Scholar
  155. 155.
    Kanamaru, K., Waga, S., Kojima, T., Fujimoto, K., and Niwa, S., 1987, Endothelium-dependent relaxation of canine basilar arteries. Part 2: Inhibition by hemoglobin and cerebrospinal fluid from patients with aneurysmal subarachnoid hemorrhage, Stroke 18:938–943.PubMedCrossRefGoogle Scholar
  156. 156.
    Tanaka, Y., and Chiba, S., 1988, Relationship between extraluminal oxyhemoglobin to intraluminal 5-hydroxytryptamine in isolated canine internal carotid arteries, Neurosurgery 69:263–268.CrossRefGoogle Scholar
  157. 157.
    Hongo, K., Kassell, N. F., Nakagomi, T., Sasaki, T., Tsukahara, T., Ogawa, H., Vollmer, D. G., and Lehman, R. M., 1988, Subarachnoid hemorrhage inhibition of endothelium-derived relaxing factor in rabbit basilar artery, J. Neurosurg. 69:247–253.PubMedCrossRefGoogle Scholar
  158. 158.
    Nakagomi, T., Kassell, N. F., Sasaki, T., Fujiwara, S., Lehman, R. M., Johshita, H., Nazar, G. B., and Torner, J. C., 1987, Effect of subarachidonal hemorrhage on endothelium-dependent vasodilation, J. Neurosurg. 66:915–923.PubMedCrossRefGoogle Scholar
  159. 159.
    Nakagomi, T., Kassell, N. F., Sasaki, T., Fujiwara, S., Lehman, R. M., and Torner, J. C., 1987, Impairment of endothelium-dependent vasodilation induced by acetylcholine and adenosine triphosphate following experimental subarachnoid hemorrhage, Stroke 18:482–489.PubMedCrossRefGoogle Scholar
  160. 160.
    Kim, P., Sundt, T. M., and Vanhoutte, P.M., 1989, Alterations in endothelium-dependent responsiveness of the canine basilar artery, J. Neurosurg. 69:239–246.Google Scholar
  161. 161.
    Kim, P., Lorenz, R. R., Sundt, T. M., and Vanhoutte, P. M., 1989, Release of endothelium-derived relaxing factor after subarachnoid hemorrhage, J. Neurosurg. 70:108–114.PubMedCrossRefGoogle Scholar
  162. 162.
    Levinsky, N. G., 1977, Pathophysiology of acute renal failure, N. Engl. J. Med. 296:1453–1458.PubMedCrossRefGoogle Scholar
  163. 163.
    Lüscher, T. F., Bock, A. H., Yang, Z., and Diederich, D., 1991, Endothelium-derived relaxing and contracting factors: Perspectives in nephrology, Kidney Int. 39:575–590.PubMedCrossRefGoogle Scholar
  164. 164.
    Schultz, P., Hartich, L., and Raij, L., 1988, The endothelium derived relaxing factor (EDRF) nitric oxide (NO) increases cGMP levels in rat mesangial cells [Abstract], Am. J. Hypertension 1:75A.CrossRefGoogle Scholar
  165. 165.
    Conger, J. D., Robinette, J. B., and Schrier, R. W., 1988, Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure, J. Clin. Invest. 82:532–537.PubMedCrossRefGoogle Scholar
  166. 166.
    De Mey, J. G., and Vanhoutte, P.M., 1982, Heterogenous behavior of the canine arterial and venous wall: Importance of the endothelium, Circ. Res. 51:439–447.PubMedCrossRefGoogle Scholar
  167. 167.
    Greenberg, B., Rhoden, K., and Barnes, P., 1987, Endothelium-dependent relaxation of human pulmonary arteries, Am. J. Physiol. 252:H434–H438.Google Scholar
  168. 168.
    Ignarro, L. J., Byrns, R. E., Buga, G. M., and Woods, K. S., 1987, Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacological and chemical properties identical to those of nitric oxide radical, Circ. Res. 61:866–879.PubMedCrossRefGoogle Scholar
  169. 169.
    Cherry, P. D., and Gillis, C. N., 1987, Evidence for the role of endothelium-derived relaxing factor in acetylcholine-induced vasodilatation in the intact lung, J. Pharmacol. Exp. Ther. 241:516–520.PubMedGoogle Scholar
  170. 170.
    Dinh, X. A. T., Higenbottam, T. W., Clelland, C. A., Pepke-Zaba, J., Cremona, G., Yazdani Butt, A., Large, S. R., Wells, F. C., and Wallwork, J., 1991, Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease, N. Engl. J. Med. 324:1539–1547.CrossRefGoogle Scholar
  171. 171.
    Dinh, X. A. T., Higenbottam, T. W., Pepke-Zaba, J., Clelland, C., and Wallwork, J., 1989, Reduced endothelium-dependent relaxation of cystic fibrosis pulmonary arteries, Eur. J. Pharmacol. 163:401–403.CrossRefGoogle Scholar
  172. 172.
    Kaiser, L., Spickard, R. C., and Olivier, N. B., 1989, Heart failure depresses endothelial cell dependent relaxation to acetylcholine in the canine femoral artery, Am. J. Physiol. 256:H962–H967.Google Scholar
  173. 173.
    Tracey, K. J., Lowery, S. F., and Fahey, T. J., 1986, Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog, Gynecol. Obstet. 164:415–422.Google Scholar
  174. 174.
    Tracey, K. J., Beutler, B., Lowry, S. F., Merryweather, J., Wolpe, S., Milsark, I. W., Hariri, R. J., Fahey, T. J., III, Zentella, A., Albert, J. D., Shires, G. T., and Cerami, A., 1986, Shock and tissue injury induced by recombinant human cachectin, Science 234:470–474.PubMedCrossRefGoogle Scholar
  175. 175.
    Aoki, N., Siegfried, M., and Lefer, A. M., 1989, Anti-EDRF effect of tumor necrosis factor in isolated, perfused cat carotid arteries, Am. J. Physiol. 256:H1509–H1512.Google Scholar
  176. 176.
    Vane, J. R., 1971, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nature 231:232–235.Google Scholar
  177. 177.
    Fleming, I., Gray, G. A., Julou-Schaeffer, G., Barratt, J. R., and Stoclet, J. C., 1990, Incubation with endotoxin activates the L-arginine pathway in vascular tissue, Biochem. Biophys. Res. Commun. 171: 562–568.PubMedCrossRefGoogle Scholar
  178. 178.
    Busse, R., Personal communication.Google Scholar
  179. 179.
    Lüscher, T. F., and Vanhoutte, P. M., 1988, Hypertension and endothelium-dependent responses, in: Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium (P. M. Vanhoutte, ed.), Raven Press, New York, pp. 523–529.Google Scholar
  180. 180.
    Lüscher, T. F., 1988, Endothelial Vasoactive Substances and Cardiovascular Disease, Karger, Basel, pp. 1–215.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Thomas F. Lüscher
    • 1
  • Paul M. Vanhoutte
    • 2
  1. 1.Department of Research, Laboratory of Vascular Research, and Department of Medicine, Divisions of Clinical Pharmacology and CardiologyUniversity HospitalBaselSwitzerland
  2. 2.Center for Experimental TherapeuticsBaylor College of MedicineHoustonUSA

Personalised recommendations