Modulation of Fibronectin and Thrombospondin Synthesis and mRNA Levels by Heparin in Human Endothelial and Smooth Muscle Cell Cultures

  • Bernadette Lyons-Giordano
  • Jane M. Brinker
  • Nicholas A. Kefalides


Since the initial observations that mast cells containing heparin accumulate at tumor sites prior to neovascularization,1 numerous studies have underscored the potential importance of heparin in the regulation of new vessel formation. In vitro heparin potentiates human umbilical vein endothelial cell (EC)* chemotactic and growth responses to endothelial cell growth factor (ECGF), a member of the fibroblast growth factor (FGF) family of mitogens.2,3 The growth and migration stimulatory activity of heparin is neutralized by protamine, an arginine-rich basic protein which is known to bind avidly to heparin.2,4 In vivo local administration of protamine inhibits neovascularization induced by inflammatory agents or by immune reactions. Coadministration of heparin reverses the effect of protamine.5


Human Umbilical Vein Endothelial Cell Endothelial Cell Migration Human Vascular Smooth Muscle Cell Heparin Concentration Human Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kessler, D. A., Langer, R. S., Pless, N. A., and Folkman, J., 1976, Mast cells and tumor angiogenesis, Int. J. Cancer 18:703–709.PubMedCrossRefGoogle Scholar
  2. 2.
    Thornton, S. C., Mueller, S. N., and Levine, E. M., 1983, Human endothelial cells: Use of heparin in cloning and long-term serial cultivation, Science 222:623–625.PubMedCrossRefGoogle Scholar
  3. 3.
    Terranova, V. P., DiFlorio, R. M., Hic, S., Friesel, R., Lyall, R. M., and Maciag, T., 1985, Human endothelial cells are chemotactic to endothelial cell growth factor and heparin, J. Cell Biol. 101:2330–2334.PubMedCrossRefGoogle Scholar
  4. 4.
    Azizkhan, R. G., Azizkhan, J. C., Zetter, B. R., and Folkman, J., 1980, Mast cell heparin stimulates migration of capillary endothelial cells in vitro, J. Exp. Med. 152:931–944.PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor, S., and Folkman, J., 1982, Protamine is an inhibitor of angiogenesis, Nature 297:307–311.PubMedCrossRefGoogle Scholar
  6. 6.
    Glimelius, B., Busch, C., and Hook, M., 1978, Binding of heparin on the surface of cultured human endothelial cells, Thromb. Res. 12:773–782.PubMedCrossRefGoogle Scholar
  7. 7.
    Barzu, T., Molho, P., Tobelem, G., Petitou, M., and Caen, J., 1985, Binding and endocytosis of heparin by endothelial cells in culture, Biochim. Biophys. Acta 845:196–203.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenbaum, J., Tokelem, G., Molho, P., and Caen, J. P., 1986, Modulation of endothelial cell growth induced by heparin, Cell Biol. Int. Rep. 10:437–446.PubMedCrossRefGoogle Scholar
  9. 9.
    Schreiber, A. B., Kenney, J., Friesel, R., Mehlman, T., and Maciag, T., 1985, Interaction of endothelial cell growth factor with heparin. Characterization by receptor and antibody recognition, Proc. Natl. Acad. Sci. USA 82:6138–6142.PubMedCrossRefGoogle Scholar
  10. 10.
    Gospodarowicz, D., and Cheng, J., 1986, Heparin protects basic and acidic FGF from inactivation, J. Cell. Physiol. 128:475–484.PubMedCrossRefGoogle Scholar
  11. 11.
    Folkman, J., Klagsburn, M., Sasse, J., Wadzinski, M., Ingbee, D., and Vlodavsky, J., 1988, A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane, Am. J. Pathol. 130:393–400.PubMedGoogle Scholar
  12. 12.
    Gospodarowicz, D., Massoglia, S., Cheng, J., Lui, G.-L., and Bohlen, P., 1985, Isolation of bovine pituitary fibroblast growth factor purified by fast protein liquid chromatography (FPLC): Partial chemical and biological characterization, J. Cell. Physiol. 122:323–333.PubMedCrossRefGoogle Scholar
  13. 13.
    Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsburn, M., 1982, Endothelial cell derived basic fibroblast growth factor: Synthesis and deposition into subendothelial cell extracellular matrix, Proc. Natl. Acad. Sci. USA 84:2292–2296.CrossRefGoogle Scholar
  14. 14.
    Baird, A., and Ling, N., 1987, Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro. Implications for a role of heparinase-like enzymes in the neovascular response, Biochem. Biophys. Res. Commun. 142:428–435.PubMedCrossRefGoogle Scholar
  15. 15.
    Kramer, R. H., Vogel, K. G., and Nicolson, G. L., 1982, Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells, J. Biol. Chem. 257:2678–2686.PubMedGoogle Scholar
  16. 16.
    Ingber, D., Madri, J. A., and Folkman, J., 1987, Endothelial cell growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion, In Vitro Cell. Dev. Biol. 23: 387–394.PubMedCrossRefGoogle Scholar
  17. 17.
    Folkman, J., and Moscona, A., 1978, Role of cell shape in growth control, Nature 273:345–349.PubMedCrossRefGoogle Scholar
  18. 18.
    Glaser, B. M., Kalebic, T., Garbisa, S., Connor, T. B., and Liotta, L., 1983, Degradation of basement membrane components by vascular endothelial cells: Role in neovascularization, Ciba Found. Symp. 100:150–162.PubMedGoogle Scholar
  19. 19.
    Macarak, E. J., and Howard, P. S., 1983, Adhesion of endothelial cells to extracellular matrix proteins, J. Cell. Physiol. 116:76–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Young, W. C., and Herman, I. M., 1985, Extracellular matrix modulation of endothelial cell shape and motility following injury in vitro, J. Cell Sci. 73:19–32.PubMedGoogle Scholar
  21. 21.
    Gospodarowicz, D., and Ill, C. R., 1981, Do plasma and serum have different abilities to promote cell growth? Proc. Natl. Acad. Sci. USA 77:2726–2730.CrossRefGoogle Scholar
  22. 22.
    Maciag, T., Kadish, L., Wilkins, M. B., Stemmerman, M. B., and Weinstein, R., 1982, Organizational behavior of human umbilical vein endothelial cells, J. Cell Biol. 94:511–520.PubMedCrossRefGoogle Scholar
  23. 23.
    Hassell, J. R., Gehron Robey, P., Barrach, H.-J., Wilzcek, J., Rennard, S. I., and Martin, G. R., 1980, Isolation of a heparan sulfate containing proteoglycan from basement membrane, Proc. Natl. Acad. Sci. USA 77:4494–4498.PubMedCrossRefGoogle Scholar
  24. 24.
    Howard, B. V., Macarak, E. J., Gunson, D., and Kefalides, N. A., 1976, Characterization of collagen synthesized by endothelial cells in culture, Proc. Natl. Acad. Sci. USA 73:2361–2364.PubMedCrossRefGoogle Scholar
  25. 25.
    Sage, H., Crouch, E., and Bornstein, P., 1979, Collagen synthesis by bovine aortic endothelial cells in culture, Biochemistry 18:5433–5442.PubMedCrossRefGoogle Scholar
  26. 26.
    Macarak, E. J., Kirby, E., Kirk, T., and Kefalides, N. A., 1978, Synthesis of cold-insoluble globulin by cultured calf endothelial cells, Proc. Natl. Acad. Sci. USA 75:2621–2625.PubMedCrossRefGoogle Scholar
  27. 27.
    Jaffe, E. A., and Mosher, D. F., 1978, Synthesis of fibronectin by cultured human endothelial cells, J. Exp. Med. 147:1779–1791.PubMedCrossRefGoogle Scholar
  28. 28.
    Birdwell, C. R., Gospodarowicz, D., and Nicolson, G. L., 1978, Identification, localization and role of fibronectin in cultured bovine endothelial cells, Proc. Natl. Acad. Sci. USA 75:3273–3277.PubMedCrossRefGoogle Scholar
  29. 29.
    Gospodarowicz, D., Greenburg, G., Foidart, J. M., and Savion, N., 1981, The production and localization of laminin in cultured vascular and corneal endothelial cells, J. Cell. Physiol. 107:171–183.PubMedCrossRefGoogle Scholar
  30. 30.
    Mosher, D. F., Doyle, M. J., and Jaffe, E. A., 1982, Synthesis and secretion of thrombospondin by cultured human endothelial cells, J. Cell Biol. 93:343–348.PubMedCrossRefGoogle Scholar
  31. 31.
    Clowes, A. W., Reidy, M. A., and Clowes, M. M., 1983, Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium, Lab. Invest. 49:322–333.Google Scholar
  32. 32.
    Ross, R., and Glomset, J. A., 1976, The pathogenesis of atherosclerosis, AT. Engl. J. Med. 295:369–377.CrossRefGoogle Scholar
  33. 33.
    Clowes, A. W., and Karnovsky, M. J., 1977, Suppression by heparin of smooth muscle cell proliferation in injured arteries, Nature 265:625–626.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoover, R. L., Rosenberg, R. D., Haering, W., and Karnovsky, M. J., 1980, Inhibition of rat arterial smooth muscle cell proliferation by heparin II: In vitro studies, Circ. Res. 47:578–583.PubMedCrossRefGoogle Scholar
  35. 35.
    Gimbrone, M. A., Cotran, R. S., and Folkman, J., 1974, Human vascular endothelial cells. Growth and DNA synthesis, J. Cell Biol. 60:673–684.PubMedCrossRefGoogle Scholar
  36. 36.
    Tumilowicz, J. J., Gawlik, M. E., Powell, B. B., and Trentin, J. J., 1985, Replication of cytomegalovirus in human arterial smooth muscle cells, J. Virol. 56:839–845.PubMedGoogle Scholar
  37. 37.
    Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680–685.PubMedCrossRefGoogle Scholar
  38. 38.
    Rennard, S. I., Berg, R., Martin, G. R., Foidart, J. M., and Gehron, P., 1980, Enzyme-linked immunoassay (ELISA) for connective tissue components, Anal. Biochem. 104:205–214.PubMedCrossRefGoogle Scholar
  39. 39.
    Lyons-Giordano, B., Brinker, J. M., and Kefalides, N. A., 1990, The effect of heparin on fibronectin and thrombospondin synthesis and mRNA levels in cultured human endothelial cells, Exp. Cell. Res. 186:39–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Rowe, D. W., Moen, R. C., Davidson, J. M., Byers, P. H., Bornstein, P., and Palmiter, R. D., 1978, Correlation of procollagen mRNA levels in normal and transformed chick-embryo fibroblasts with different rates of procollagen synthesis, Biochemistry 17:1581–1590.PubMedCrossRefGoogle Scholar
  41. 41.
    Wahl, G., 1981, Schleicher and Schuell sequences: Application update No. 371, Schleicher and Schuell, Inc., Keene, N.H.Google Scholar
  42. 42.
    Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  43. 43.
    Kornblihht, A. R., Vibe-Pederson, K., and Baralle, F. E., 1983, Isolation and characterization of cDNA clones for human and bovine fibronectins, Proc. Natl. Acad. Sci. USA 80:3218–3222.CrossRefGoogle Scholar
  44. 44.
    Dixit, V. M., Hennessey, S. W., Grant, G. A., Rotwein, P., and Frazier, W. A., 1986, Characterization of a cDNA encoding the heparin and collagen binding domains of thrombospondin, Proc. Natl. Acad. Sci. USA 83:5449–5453.PubMedCrossRefGoogle Scholar
  45. 45.
    Gunning, P., Ponte, P., Blau, H., Okayama, H., Engel, J., and Kedes, L., 1983, Human actin genes are single copy for a skeletal and a cardiac actin but multicopy for β and γ-cytoskeletal genes. 3′ untranslated regions are isotope specific but are conserved in evolution, Mol. Cell. Biol. 3:854–862.Google Scholar
  46. 46.
    Hall, J. L., Dudley, L., Dobner, P. R., Lewis, S. A., and Gowan, N. J., 1983, Identification of two human β-tubulin isotypes, Mol. Cell Biol. 3:787–795.Google Scholar
  47. 47.
    Myers, J. C., Chiu, M.-L., Fiaro, S. H., Clark, W. J., Prockop, D. J., and Ramirez, F., 1981, Cloning a cDNA for the pro a 2 chain of human type I collagen, Proc. Natl. Acad. Sci. USA 78:3516–3520.PubMedCrossRefGoogle Scholar
  48. 48.
    Chiu, M.-L., Weil, D., deWet, W., Bernard, M., Sippola, M., and Ramirez, F., 1985, Isolation of cDNA and genomic clones encoding human pro-α1(III) collagen. Partial characterization of the 3’ end region of the gene, J. Biol. Chem. 260:4357–4363.Google Scholar
  49. 49.
    Clowes, A. W., and Clowes, M. M., 1985, Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin, Lab. Invest. 52:611–616.PubMedGoogle Scholar
  50. 50.
    Madri, J. A., Reidy, M. A., Kocher, O., and Bell, L., 1989, Endothelial cell behavior after denudation injury is modulated by transforming growth factor-β1 and fibronectin, Lab. Invest. 60:755–765.PubMedGoogle Scholar
  51. 51.
    Majack, R. A., and Bornstein, P., 1985, Heparin regulates the collagen phenotype of vascular smooth muscle cells: Induced synthesis of an Mr 60,000 collagen, J. Cell Biol. 100:613–619.PubMedCrossRefGoogle Scholar
  52. 52.
    Majack, R. A., and Bornstein, P., 1984, Heparin and related glycosaminoglycans modulate the secreting phenotype of vascular smooth muscle cells, J. Cell Biol. 99:1688–1695.PubMedCrossRefGoogle Scholar
  53. 53.
    Majack, R. A., Cook, S. C., and Bornstein, P., 1985, Platelet-derived growth factor and heparin like glycosaminoglycans regulate thrombospondin synthesis and deposition in the matrix by smooth muscle cells, J. Cell Biol. 101:1059–1070.PubMedCrossRefGoogle Scholar
  54. 54.
    Konkle, B. A., and Ginsburg, D., 1988, The addition of endothelial cell growth factor and heparin to human umbilical vein endothelial cell cultures decreases plasminogen activator inhibitor-1 expression, J. Clin. Invest. 82:579–585.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Bernadette Lyons-Giordano
    • 1
    • 2
  • Jane M. Brinker
    • 3
    • 4
  • Nicholas A. Kefalides
    • 3
    • 4
  1. 1.Departments of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Departments of Biochemistry and BiophysicsUniversity City Science CenterPhiladelphiaUSA
  3. 3.Connective Tissue Research Institute and Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Connective Tissue Research Institute and Department of MedicineUniversity City Science CenterPhiladelphiaUSA

Personalised recommendations