Modulation of Endothelial Coagulant Properties and Barrier Function by Factors in the Vascular Microenvironment

  • H. Gerlach
  • M. Clauss
  • S. Ogawa
  • D. M. Stern

Abstract

As the cells forming the luminal vascular surface, endothelium regulates both barrier and hemostatic functions, comprising pro- and anti-coagulant reactions.1–3 Endothelial cells carry out these functions by controlling the expression of cell surface molecules, such as receptors which regulate the hemostatic balance, those which affect permeability across the endothelial monolayers, and those which mediate leukocyte adhesion. The schematic representation in Fig. 1 emphasizes that endothelial regulation of these processes occurs in response to environmental stimuli, and that these stimuli include both blood-borne mediators, as well as factors in the vessel wall. In response to these perturbants, barrier function of the endothelial monolayer is affected and coagulant function can be shifted to favor clot formation. Barrier function of the monolayer and cell surface coagulant properties are closely linked since activation of coagulation leads to formation of proteases and fibrin, which can, in turn, increase endothelial permeability. Conversely, diminished barrier function and ingress of plasma proteins into the subendothelium promotes clotting.

Keywords

Tissue Factor Tumor Vasculature Endothelial Monolayer Tissue Factor Activity Human Fibrinogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gimbrone, M. (ed.), 1986, Vascular Endothelium in Hemostasis and Thrombosis, Churchill & Livingstone, Edinburgh.Google Scholar
  2. 2.
    Simionescu, N., and Simionescu, M. (eds.), 1988, Endothelial Cell Biology in Health and Disease, Plenum Press, New York.CrossRefGoogle Scholar
  3. 3.
    Stern, D., and Nawroth, P. (eds.), 1987, Vessel Wall, Semin. Thromb. Hemostasis 13.Google Scholar
  4. 4.
    Old, L., 1986, Tumor necrosis factor, Science 230:630–634.CrossRefGoogle Scholar
  5. 5.
    Asher, A., Mule, J., Reichert, C., Shiloni, E., and Rosenberg, S., 1987, Studies of the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo, J. Immunol. 138:963–975.PubMedGoogle Scholar
  6. 6.
    Carswell, E., Old, L., Kassel, R., Green, S., Fiore, N., and Williamson, B., 1975, An endotoxin induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA 72:3666–3670.PubMedCrossRefGoogle Scholar
  7. 7.
    Nawroth, P., Handley, D., Matsueda, G., De Waal, R., Gerlach, H., Blohm, D., and Stern, D., 1988, Tumor necrosis factor/cachectin-induced intravascular fibrin formation in meth A fibrosarcomas, J. Exp. Med. 168:637–647.PubMedCrossRefGoogle Scholar
  8. 8.
    Hui, K., Haber, E., and Matsueda, G., 1983, Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen, Science 222:1129–1132.PubMedCrossRefGoogle Scholar
  9. 9.
    Bale, M., and Mosher, D., 1986, Effects of thrombospondin on fibrin polymerization and structure, J. Biol. Chem. 261:862–870.PubMedGoogle Scholar
  10. 10.
    Nawroth, P., and Stern, D., 1986, Modulation of endothelial cell hemostatic properties by TNF, J. Exp. Med. 164:740–745.CrossRefGoogle Scholar
  11. 11.
    Bevilacqua, M., Pober, J., Majeau, G., Fiers, W., Cotran, R., and Gimbrone, M., 1986, Recombinant TNF induces procoagulant activity in endothelium, Proc. Natl. Acad. Sci. USA 83:4533–4537.PubMedCrossRefGoogle Scholar
  12. 12.
    Schleef, R., Bevilacqua, M., Sawdey, M., Gimbrone, M., and Loskutoff, D., 1986, Cytokine activation of vascular endothelium. Effects on tissue-type plasminogen activator and type I plasminogen inhibitor, J. Biol. Chem. 263:5797–5804.Google Scholar
  13. 13.
    Nawroth, P., Bank, I., Handley, D., Cassimeris, J., Chess, L., and Stern, D. J., 1989, Enhanced responsiveness of endothelium in the growing/motile state to tumor necrosis factor/cachectin, Exp. Med. 163:1363–1375.Google Scholar
  14. 14.
    Clauss, M., Murray, C., Vianna, M., De Waal, R., Thurston, G., Nawroth, P., Gerlach, H., Gerlach, M., Bach, R., Familletti, P., and Stern, D., 1990, A polypeptide factor produced by fibrosarcoma cells that induces endothelial tissue factor and enhances the procoagulant response to tumor necrosis factor/cachectin, J. Biol. Chem. 265:7078.PubMedGoogle Scholar
  15. 15.
    Esmon, C., 1987, The regulation of natural anticoagulant pathways, Science 235:1348–1352.PubMedCrossRefGoogle Scholar
  16. 16.
    Moore, K., Esmon, C., and Esmon, N., 1989, Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture, Blood 73: 159–165.PubMedGoogle Scholar
  17. 17.
    Conway, E., and Rosenberg, R., 1988, Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells, Circ. 78(Suppl. II):0462a.CrossRefGoogle Scholar
  18. 18.
    Gerlach, H., Liebermann, H., Brett, J., Bach, R., Godman, G., and Stern, D., 1989, Enhanced responsiveness of endothelium in the growing/motile state to tumor necrosis factor/cachectin, J. Exp. Med. 170:913–931.PubMedCrossRefGoogle Scholar
  19. 19.
    Henning, B., Goldblum, S., and McClain, C., 1987, Interleukin I and tumor necrosis factor/cachectin increase endothelial permeability in vitro, J. Leukocyte Biol. 42:551a.Google Scholar
  20. 20.
    Clark, M., Chen, M.-J., Crooke, S., and Bomalaski, J., 1988, Tumor necrosis factor induces phospholipase A2-activating protein in endothelial cells, Biochem. J. 250;125–132.PubMedGoogle Scholar
  21. 21.
    Brett, J., Gerlach, H., Nawroth, P., Steinberg, S., Godman, G., and Stern, D., 1989, Tumor necrosis factor/ cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins, J. Exp. Med. 169:1977–1991.PubMedCrossRefGoogle Scholar
  22. 22.
    Stelzner, T., O’Brien, R., Sato, K., and Weil, J., 1988, Hypoxia-induced increases in pulmonary transvascular protein escape in rats, J. Clin. Invest. 82:1840–1847.PubMedCrossRefGoogle Scholar
  23. 23.
    Hultgren, J., 1978, High altitude edema, in: Lung Water and Solute Exchange (N. Staub, ed.), Dekker, New York, pp. 437–469.Google Scholar
  24. 24.
    Kinasewitz, G., Groome, L., Marshall, R., Leslie, W., and Diana, H., 1986, Effect of hypoxia on permeability of pulmonary endothelium of canine visceral pleura, J. Appl. Physiol. 61:554–560.PubMedGoogle Scholar
  25. 25.
    Olesen, S.-P., 1986, Rapid increase in blood brain barrier permeability during severe hypoxia and metabolic inhibition, Brain Res. 368:24–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Sevitt, S., 1967, The acutely swollen leg and deep vein thrombosis, Br. J. Surg. 54:886–890.PubMedCrossRefGoogle Scholar
  27. 27.
    Hamer, J., Malone, P., and Silver, I., 1981, The pO2 in venous valve pockets: Its possible bearing on thrombogenesis, Br. J. Surg. 68:166–170.PubMedCrossRefGoogle Scholar
  28. 28.
    Malone, P., 1977, A hypothesis concerning the aetiology of venous thrombosis, Med. Hypotheses 5:189–201.CrossRefGoogle Scholar
  29. 29.
    Ogawa, S., Gerlach, H., Esposito, C., Pasagian-Macaulay, A., Brett, J., and Stern, D., 1990, Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium, J. Clin. Invest. 85:1090–1097.PubMedCrossRefGoogle Scholar
  30. 30.
    Roca, J., Hogan, M., Story, D., Bebout, D., Haab, P., Gonzalez, R., Ueno, O., and Wagner, P., 1989, Evidence for tissue diffusion limitation of VO2max in normal humans, J. Appl. Physiol. 67:291–299.PubMedGoogle Scholar
  31. 31.
    Lee, S.-L., and Fanburg, B., 1987, Glycolytic activity and enhancement of serotonin uptake by endothelial cells exposed to hypoxia/anoxia, Circ. Res. 60:653–688.PubMedCrossRefGoogle Scholar
  32. 32.
    Bottaro, D., Shepro, D., Peterson, S., and Hechtman, H., 1986, Serotonin, norepinephrine, and histamine mediation of endothelial cell barrier function in vitro, J. Cell. Physiol. 128:189–197.PubMedCrossRefGoogle Scholar
  33. 33.
    Del Vecchio, P., Siflinger-Birnboim, A., Shepard, J., Bizios, R., Cooper, J., and Malik, A., 1987, Endothelial monolayer permeability to macromolecules, Fed. Proc. 46:2511–2515.PubMedGoogle Scholar
  34. 34.
    Meyrick, B., Perkett, E., Harris, T., and Brigham, K., 1987, Correlation of permeability with the structure of the endothelial layer of pulmonary artery intimai explants, Fed. Proc. 46:2516–2520.PubMedGoogle Scholar
  35. 35.
    Shasby, D., and Roberts, R., 1987, Transendothelial transfer of macromolecules in vitro, Fed. Proc. 46:2506–2510.PubMedGoogle Scholar
  36. 36.
    Albelda, S., Sampson, P., Haselton, F., McNiff, J., Mueller, S., Williams, S., Fishman, A., and Levine, E., 1988, Permeability characteristics of cultured endothelial cell monolayers, J. Appl. Physiol. 64:308–317.PubMedGoogle Scholar
  37. 37.
    Navab, M., Hough, G., Van Lenten, B., Berliner, J., and Fogelman, A., 1988, Low density lipoproteins transfer lipopolysaccharides across endothelial monolayers in a biological active form, J. Clin. Invest. 81: 601–612.PubMedCrossRefGoogle Scholar
  38. 38.
    Retrosen, D., and Gallin, J., 1986, Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers, J. Cell Biol. 103:2379–2380.CrossRefGoogle Scholar
  39. 39.
    Lynch, D., Ansel, P., and Levene, R., 1989, Effects of anoxia on gene expression in human endothelial cells, J. Cell Biol. 107:581a.Google Scholar
  40. 40.
    Wojta, J., Jones, R., Binder, B., and Hoover, R., 1988, Reduction in PO2 decreases the fibrinolytic potential of cultured bovine endothelial cells derived from pulmonary arteries and lung microvasculature, Blood 71:1703–1706.PubMedGoogle Scholar
  41. 41.
    Fujikawa, K., Coan, M., Legaz, M., and Davie, E., 1974, The mechanism of activation of bovine factor J. by intrinsic and extrinsic pathways, Biochemistry 13:5290–5299.Google Scholar
  42. 42.
    Falanga, A., and Gordon, S., 1985, Isolation and characterization of cancer procoagulant: A cysteine proteinase from malignant tissue, Biochemistry 24:5558–5567.PubMedCrossRefGoogle Scholar
  43. 43.
    Falanga, A., Alessio, M., Donati, M., and Barbui, T., 1988, A new procoagulant in leukemia, Blood 71: 870–875.PubMedGoogle Scholar
  44. 44.
    Subjeck, J., and Thung-Tai, S., 1986, Stress protein synthesis of mammalian cells, Am. J. Physiol. 250:C1–C17.Google Scholar
  45. 45.
    Anderson, G., Stoler, D., and Scarcello, L., 1989, Normal fibroblasts responding to anoxia exhibit the features of the malignant phenotype, J. Biol. Chem. 264:14885–14892.PubMedGoogle Scholar
  46. 46.
    Anderson, G., Stoler, D., and Scarcello, L., 1989, Retrotransposon-like VL30 elements are efficiently induced in anoxic rat fibroblasts, J. Mol. Biol. 205:765–769.PubMedCrossRefGoogle Scholar
  47. 47.
    Sciandra, J., Subjeck, J., and Hughes, H., 1984, Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation, Proc. Natl. Acad. Sci. USA 81:4843–4847.PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson, R., and Sutherland, R., 1989, Enhanced synthesis of specific proteins, RNA, and DNA caused by hypoxia and reoxygenation, J. Radiat. Oncol. Biol. Phys. 16:957–961.CrossRefGoogle Scholar
  49. 49.
    Hassoun, P., Pasricha, P., Teofel, E., Lee, S., and Fanburg, B., 1989, Hypoxia stimulates the release by pulmonary artery endothelial cells of an inhibitor of pulmonary artery smooth muscle cell growth, Am. J. Respir. Cell Mol. Biol. 1:377–384.PubMedCrossRefGoogle Scholar
  50. 50.
    Bounelis, P., Magargal, W., King, S., Booyse, F., Oparil, S., and Miller, D., 1989, Hypoxia stimulates platelet-derived growth factor gene expression by pulmonary artery endothelial cells, Clin. Res. 36:503a.Google Scholar
  51. 51.
    King, S., Booyse, F., Lin, P.-H., Traylor, M., Narkates, A., and Oparil, S., 1989, Hypoxia stimulates endothelial cell angiotensin converting enzyme antigen synthesis, Am. J. Physiol. 256:0231–0238.Google Scholar
  52. 52.
    Krulewitz, A., and Fanburg, B., 1984, The effect of oxygen tension on the in vitro production and release of angiotensin-converting enzyme by bovine pulmonary artery endothelial cells, Am. Rev. Respir. Dis. 130:866–869.PubMedGoogle Scholar
  53. 53.
    Senger, D., Galli, S., Dvorak, A., Perruzzi, C., Harvey, V., and Dvorak, H., 1983, Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid, Science 219:983–986.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. Gerlach
    • 1
  • M. Clauss
    • 1
  • S. Ogawa
    • 1
  • D. M. Stern
    • 1
  1. 1.Rover Research Laboratory, Department of Physiology and Cellular BiophysicsCollege of Physicians and Surgeons, Columbia UniversityNew YorkUSA

Personalised recommendations