Advertisement

The Microvascular Phases of Metastasis

  • Leonard Weiss
  • F. William Orr

Abstract

Metastases are cancers which are not in contiguity with the malignant lesions generating them, and in one way or another, constitute the major clinical problem in the majority of patients with cancer.

Keywords

Cancer Cell Endothelial Cell Basement Membrane Melanoma Cell Capillary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woolley, D. E., 1984, Collagenolytic mechanisms in tumor cell invasion, Cancer Metastasis Rev. 3:361–272.PubMedCrossRefGoogle Scholar
  2. 2.
    Welch, D. R., Schissel, D. J., Howrey, R. P., and Aeed, P. A., 1989, Tumor-elected polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells, Proc. Natl. Acad. Sci. USA 86:5859–5863.PubMedCrossRefGoogle Scholar
  3. 3.
    Biswas, C., 1982, Host-tumor cell interactions and collagenase activity, in: Tumor Invasion and Metastasis (L. A. Liotta, and I. R. Hart, eds.), Nijhoff, The Hague, p. 405.CrossRefGoogle Scholar
  4. 4.
    Murphy, G., Hembry, R. M., McGarrety, A. M., and Reynolds, J. J., 1989, Gelatinase (type IV collagenase) immunolocalization in cells and tissues: Use of an antiserum to rabbit bone gelatinase that identifies high and low Mr forms, J. Cell Sci. 92:487–495.PubMedGoogle Scholar
  5. 5.
    Franks, A. J., and Ellis, E., 1989, Immunohistochemical localization of tissue plasminogen activator in human brain tumors, Br. J. Cancer 59:462–466.PubMedCrossRefGoogle Scholar
  6. 6.
    Weiss, L., Orr, F. W., and Honn, K. V., 1989, Interactions between cancer cells and the microvasculature: A rate-regulator for metastasis, Clin. Exp. Metastasis 7:127–167.PubMedCrossRefGoogle Scholar
  7. 7.
    Glaves, D., Huber, R. P., and Weiss, L., 1988, Hematogenous dissemination of cells from human renal adenocarcinomas, Br. J. Cancer 57:32–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Glaves, D., 1986, Detection of circulating metastatic cells in cancer metastasis, in: Cancer Metastasis: Experimental and Clinical Strategies (D. R. Welch, B. K. Bhuyan, and L. A. Liotta, eds.), Liss, New York, p. 151.Google Scholar
  9. 9.
    Weiss, L., 1990, Metastatic inefficiency, Adv. Cancer Res. 54:159–211.PubMedCrossRefGoogle Scholar
  10. 10.
    Weiss, L., Dimitrov, D. S., and Angelova, M., 1985, The hemodynamic destruction of intravascular cancer cells in relation to myocardial metastasis, Proc. Natl. Acad. Sci. USA 82:5737–5741.PubMedCrossRefGoogle Scholar
  11. 11.
    Israelachvili, J. N., and McGuiggau, P. M., 1988, Forces between surfaces in liquids, Science 241:795–798.PubMedCrossRefGoogle Scholar
  12. 12.
    Weiss, L., 1985, Principles of Metastasis, Academic Press, New York, p. 1.Google Scholar
  13. 13.
    Pressman, D., and Yagi, Y., 1964, Chemical differences in vascular beds, in: Small Blood Vessel Involvement in Diabetes Mellitus (A. R. Colwell and K. Meyer, eds.), AIBS, Washington, D.C., p. 177.Google Scholar
  14. 14.
    Auerbach, R., Alby, L., Morrissey, W., Tu, M., and Joseph, J., 1985, Expression of organ-specific antigens on capillary endothelial cells, Microvasc. Res. 29:401–411.PubMedCrossRefGoogle Scholar
  15. 15.
    Hart, I. R., and Fidler, I. J., 1980, Role of organ selectivity in the determination of metastatic patterns of B16 melanoma, Cancer Res. 40:2281–2287.PubMedGoogle Scholar
  16. 16.
    Azzarelli, B., Easterling, K., and Norton, J. A., 1989, Leukemic cell-endothelial cell interactions in leukemic cell dissemination, Lab. Invest. 60:45–64.PubMedGoogle Scholar
  17. 17.
    Barbera-Gulliem, E., Alonso-Varoona, A., and Vidal-Vanaclocha, F., 1989, Selective implantation and growth in rats and mice of experimental liver metastasis in acinar zone one, Cancer Res. 49(14):4003–4010.Google Scholar
  18. 18.
    Kinsey, D. L., 1960, An experimental study of preferential metastasis, Cancer 13:674–676.PubMedCrossRefGoogle Scholar
  19. 19.
    Brodt, P., 1989, Tumor cell adhesion to frozen lymph node sections—An in vitro correlate of lymphatic metastasis, Clin. Exp. Metastasis 7:343–352.PubMedCrossRefGoogle Scholar
  20. 20.
    Nicolson, G. L., Belloni, P. N., Tressler, R. J., Dulski, K., Inoue, T., and Cavanaugh, P. G., 1989, Adhesive, invasive, and growth properties of selected metastatic variants of a murine large-cell lymphoma, Invasion Metastasis 9:102–116.PubMedGoogle Scholar
  21. 21.
    Netland, P. A., and Zetter, B. R., 1984, Organ-specific adhesion of metastatic tumor cells in vitro, Science 224:1113–1115.PubMedCrossRefGoogle Scholar
  22. 22.
    Nicolson, G. L., 1982, Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells, Biochim. Biophys. Acta 695:113–176.PubMedGoogle Scholar
  23. 23.
    Nicolson, G. L., 1988, Differential organ tissue adhesion, invasion, and growth properties of metastatic rat mammary adenocarcinoma cells, Breast Cancer Res. Treat. 12:167–176.PubMedCrossRefGoogle Scholar
  24. 24.
    Doerr, R., Zvibel, I., Chiuten, D., D’Olimpio, J., and Reid, L. M., 1989, Clonal growth of tumors on tissue-specific biomatrices and correlation with organ site specificity of metastases, Cancer Res. 49:384–392.PubMedGoogle Scholar
  25. 25.
    Paget, S., 1889, The distribution of secondary growths in cancer of the breast, Lancet 1:571–573.CrossRefGoogle Scholar
  26. 26.
    Leung-Tack, J., Capo, C., De-Lapeyriere, O., Benoleil, A.-M., Arnaud, D., and Bongrand, P., 1988, Relationship between cellular adhesiveness and metastatic activity in polyomavirus-transformed FR3T3 rat cell lines, Int. J. Cancer 42:946–951.PubMedCrossRefGoogle Scholar
  27. 27.
    Behrens, J., Mareel, M. M., Van-Roy, F. M., and Birchmeier, W., 1989, Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion, J. Cell Biol. 108:2435–2447.PubMedCrossRefGoogle Scholar
  28. 28.
    Zoller, M., and Matzku, S., 1989, Changes in adhesive properties of tumor cells do not necessarily influence metastasizing capacity, Clin. Exp. Metastasis 7:227–242.PubMedCrossRefGoogle Scholar
  29. 29.
    Meromsky, L., Lotan, R., and Raz, A., 1986, Implications of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization, Cancer Res. 46:5270–5275.PubMedGoogle Scholar
  30. 30.
    Bastida, E., Almiral, L., Jamieson, G. A., and Ordinas, A., 1987, Cell surface sialylation of two human tumor cell lines and its correlation with their platelet-activating activity, Cancer Res. 47:1767–1770.PubMedGoogle Scholar
  31. 31.
    Linnemann, D., Raz, A., and Bock, E., 1989, Differential expression of cell adhesion molecules in variants of K1735 melanoma cells differing in metastatic capacity, Int. J. Cancer 43:709–712.PubMedCrossRefGoogle Scholar
  32. 32.
    Mege, R. M., Matsuzaki, F., Gallin, W. J., Goldberg, J. I., Cunningham, B. A., and Edelman, G. M., 1988, Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules, Proc. Natl. Acad. Sci. USA 85:7274–7278.PubMedCrossRefGoogle Scholar
  33. 33.
    Lotan, R., and Raz, A., 1988, Lectins in cancer cells, Ann. N.Y. Acad. Sci. 551:385–396.PubMedCrossRefGoogle Scholar
  34. 34.
    Tressler, R. J., and Nicolson, G. L., 1988, Cell surface biochemical and metastatic properties of Lens culinaris hemagglutinin-binding variants of a murine large cell lymphoma, Invasion Metastasis 8:351–363.PubMedGoogle Scholar
  35. 35.
    Roossien, F. F., de-Rijk, D., Bikker, A., and Roos, E., 1989, Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1-deficient mutants, J. Cell Biol. 108:1979–1985.PubMedCrossRefGoogle Scholar
  36. 36.
    Castronovo, V., Colin, C., Parent, B., Foidart, J. M., Lambotte, R., and Mahieu, P., 1989, Possible role of human natural anti-Gal antibodies in the natural antitumor defense system, J. Natl. Cancer Inst. 81:212–216.PubMedCrossRefGoogle Scholar
  37. 37.
    Dennis, J. W., Laferte, S., and Vanderelst, I., 1989, Asparagine-linked oligosaccharides in malignant tumor growth, Biochem. Soc. Trans. 17:29–31.PubMedGoogle Scholar
  38. 38.
    Johnson, J. P., Stade, B. G., Hupke, U., Holzmann, B., and Riethmuller, G., 1988, The melanoma progression-associated antigen P3.58 is identical to the intercellular adhesion molecule, ICAM-1, Immuno-biology 178:275–284.CrossRefGoogle Scholar
  39. 39.
    Johnson, J. P., Stade, B. G., Holzmann, B., Schwable, W., and Riethmuuer, G., 1989, De novo expression of intercellular-adhesion molecule 1 in melanoma correlates with increased risk of metastasis, Proc. Natl. Acad. Sci. USA 86:641–644.PubMedCrossRefGoogle Scholar
  40. 40.
    Sher, B. T., Bargatze, R., Holzmann, B., Gallatin, W. M., Matthews, D., Wu, M., Picker, L., Butcher, E. C., and Weissmann, I. L., 1988, Homing receptors and metastasis, Adv. Cancer Res. 51:361–390.PubMedCrossRefGoogle Scholar
  41. 41.
    Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., and Honn, K. V., 1985, Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study, Lab. Invest. 53:470–478.PubMedGoogle Scholar
  42. 42.
    Nicolson, G. L., 1982, Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers, J. Histochem. Cytochem. 30:214–220.PubMedCrossRefGoogle Scholar
  43. 43.
    Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B. F., and Honn, K. V., 1988, Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix, Cancer Res. 48: 4065–4072.PubMedGoogle Scholar
  44. 44.
    Alby, L., and Auerbach, R., 1984, Differential adhesion of tumor cells to capillary endothelial cells in vitro, Proc. Natl. Acad. Sci. USA 81:5739–5743.PubMedCrossRefGoogle Scholar
  45. 45.
    Belloni, P. N., and Nicolson, G. L., 1988, Differential expression of cell surface glycoproteins on organ-derived murine vascular endothelia and endothelial cells, J. Cell Physiol. 136:398–410.PubMedCrossRefGoogle Scholar
  46. 46.
    Streeter, P. R., Berg, E. L., Rouse, B. T., Bargatze, R. F., and Butcher, E. C., 1988, A tissue specific cell molecule involved in lymphocyte homing, Nature 331:41–46.PubMedCrossRefGoogle Scholar
  47. 47.
    Nakache, M., Berg, E. L., Streeter, P. R., and Butcher, E. C., 1989, The mucosal vascular addressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes, Nature 337:179–181.PubMedCrossRefGoogle Scholar
  48. 48.
    Cheresh, D. A., 1987, Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor, Proc. Natl. Acad. Sci. USA 84: 6471–6475.PubMedCrossRefGoogle Scholar
  49. 49.
    Fitzgerald, L. A., and Phillips, D. R., 1988, Structure of platelet membrane glycoproteins, in: Platelet Immunology (T. J. Kumicki and J. George, eds.), Lippincott, Philadelphia.Google Scholar
  50. 50.
    Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48:549–554.PubMedCrossRefGoogle Scholar
  51. 51.
    Dejana, E., Colella, S., Conforti, G., Abbadini, M., Gaboli, M., and Marchisio, P. C., 1988, Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells, J. Cell Biol. 107:1215–1223.PubMedCrossRefGoogle Scholar
  52. 52.
    Muller, W. A., and Gimbrone, M. A., Jr., 1986, Plasmalemmal proteins of cultured vascular endothelial cells exhibit apical-basal polarity: Analysis by surface-selective iodination, J. Cell Biol. 103:2389–2402.PubMedCrossRefGoogle Scholar
  53. 53.
    Pober, J. S., Lapiere, L. A., Stolpen, A. H., Brock, T. A., Springer, T. A., Fiers, W., Bevilacqua, M. P., Mendrick, D. L., and Gimbrone, M. A., Jr., 1987, Activation of cultured human endothelial cells by recombinant lymphotoxin: Comparison with tumor necrosis factor and interleukin-1 species, J. Immunol. 138:3319–3324.PubMedGoogle Scholar
  54. 54.
    Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S., and Gimbrone, M. A., Jr., 1985, Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines, J. Clin. Invest. 76:2003–2011.PubMedCrossRefGoogle Scholar
  55. 55.
    Cavender, D., Saegusa, Y., and Ziff, M., 1987, Stimulation of endothelial cell binding of lymphocytes by tumor necrosis factor, J. Immunol. 139:1855–1860.PubMedGoogle Scholar
  56. 56.
    Cotran, R. S., Gimbrone, M. A. Jr., Bevilacqua, M. P., Mendrick, D. L., and Pober, J. S., 1986, Induction and detection of a human endothelial activation antigen in vivo, J. Exp. Med. 164:661–666.PubMedCrossRefGoogle Scholar
  57. 57.
    Dustin, M. L., and Springer, T. A., 1988, Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol. 107:321–331.PubMedCrossRefGoogle Scholar
  58. 58.
    Lauri, D., Bertomeu, M.-C., Orr, F. W., Bastida, E., Sauder, D. N., and Buchanan, M. R., 1989, Differential effects of interleukin-1 and fMLP on Chemotaxis and human endothelium adhesivity for A549 tumor cells, Lab. Invest. 60:161–164.PubMedGoogle Scholar
  59. 59.
    Dejana, E., Bertocchi, F., Bortolami, M. C., Fegonesi, A., Tonta, A., Brevario, F., and Giavazzi, R., 1988, Interleukin-1 promotes tumor cell adhesion to cultured human endothelial cells, J. Clin. Invest. 82:1466–1470.PubMedCrossRefGoogle Scholar
  60. 60.
    Rice, G. E., Gimbrone, M. A., Jr., and Bevilacqua, M. P., 1988, Tumor cell-endothelial interactions. Increased adhesion of human melanoma cells to activated vascular endothelium, Am. J. Pathol. 133: 204–210.PubMedGoogle Scholar
  61. 61.
    Lauri, D., Bertomeu, M.-C., Orr, F. W., Bastida, E., Sauder, D. N., and Buchanan, M. R., 1989, Interleukin-1 increases tumor cell adhesion to endothelial cells through an RGD dependent mechanism: In vitro and in vivo studies, Clin. Exp. Metastasis 8:27–32.CrossRefGoogle Scholar
  62. 62.
    Lafrenie, R. M., Podor, T. J., Buchanan, M. R., and Orr, F. W., 1989, Adhesion of A549 tumor cells to interleukin-lalpha stimulated endothelial cells is partially mediated through a vitronectin receptor-like molecule, in: Proceedings of the First International Conference on Eicosanoids and bioactive lipids in cancer and radiation injury (K. Honn, ed.) Meeting Abstract P-II-15.Google Scholar
  63. 63.
    Bertomeu, M. C., Whybourne, K., Orr, F. W., and Buchanan, M. R., 1989, Influence of interleukin 1 on 13-HODE synthesis, integrin expression and B16 melanoma cell metastasis in vivo, in: Proceedings of the First International Conference on Eicosanoids and bioactive lipids in cancer and radiation injury (K. Honn, ed.) Meeting Abstract II.B-3.Google Scholar
  64. 64.
    Kramer, R. H., Gonzales, R., and Nicolson, G. L., 1980, Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells, Int. J. Cancer 26:639–645.PubMedCrossRefGoogle Scholar
  65. 65.
    Vlodavsky, I., Atzmon, A. R., and Fuks, Z., 1982, Tumor cell attachment to the vascular endothelium and subsequent degradation of the subendothelial extracellular matrix, Exp. Cell Res. 140:149–159.PubMedCrossRefGoogle Scholar
  66. 66.
    Aumailley, M., and Timpl, R., 1986, Attachment of cells to basement membrane collagen type IV, J. Cell Biol. 103:1569–1575.PubMedCrossRefGoogle Scholar
  67. 67.
    Rao, C. N., Margulies, I. M. K., Tralka, T. S., Terranova, V. P., Madri, J. A., and Liotta, L. A., 1982, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257:9740–9744.PubMedGoogle Scholar
  68. 68.
    Dejana, E., Colella, S., Languino, L. R., Balconi, G., Corbascio, G. C., and Marchisio, P. C., 1987, Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro, J. Cell Biol. 104:1403–1411.PubMedCrossRefGoogle Scholar
  69. 69.
    Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238:491–497.PubMedCrossRefGoogle Scholar
  70. 70.
    Fujiwara, S., Wiedmann, H., Timpl, R., Lustig, A., and Engel, J., 1984, Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane, Eur. J. Biochem. 143:145–157.PubMedCrossRefGoogle Scholar
  71. 71.
    Robertson, N. P., Starkey, J. R., Hamner, S., and Meadows, G. G., 1989, Tumor cell invasion of three-dimensional matrices of defined composition: Evidence for a specific role for heparan sulfate in rodent cell lines, Cancer Res. 49:1816–1823.PubMedGoogle Scholar
  72. 72.
    Brown, P. J., and Juliano, R. L., 1986, Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines, J. Cell Biol. 103:1595–1603.PubMedCrossRefGoogle Scholar
  73. 73.
    Dedhar, S., Ruoslahti, E., and Pierschbacher, M. D., 1987, A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence, J. Cell Biol. 104:585–593.PubMedCrossRefGoogle Scholar
  74. 74.
    Dedhar, S., Argraves, W. S., Suzuki, S., Ruoslahti, E., and Pierschbacher, M. D., 1987, Human osteosarcoma cells resistant to detachment by an Arg-Gly-Asp-containing peptide overproduces the fibronectin receptor, J. Cell Biol. 105:1175–1182.PubMedCrossRefGoogle Scholar
  75. 75.
    Liotta, L. A., Horan Hand, P., Rao, C. N., Bryant, G., Barsky, S. H., and Scholm, J., 1985, Monoclonal antibodies to the human laminin receptor recognize structurally distinct sites, Exp. Cell Res. 156:117–126.PubMedCrossRefGoogle Scholar
  76. 76.
    Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985, Identification and isolation of a 140-Kd cell surface glycoprotein with properties expected of a fibronectin receptor, Cell 40:191–198.PubMedCrossRefGoogle Scholar
  77. 77.
    Pytela, R., Pierschbacher, M. D., and Ruoslahti, E., 1985, A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin, Proc. Natl. Acad. Sci. USA 82:5766–5770.PubMedCrossRefGoogle Scholar
  78. 78.
    Liotta, L. A., 1986, Tumor invasion and membranes. Role of the extracellular matrix, Cancer Res. 46:1–7.PubMedCrossRefGoogle Scholar
  79. 79.
    McCarthy, J., Hagen, S. T., and Furcht, L. T., 1986, Fibronectin contains distinct adhesion and motility-promoting domains for metastatic melanoma cells, J. Cell Biol. 102:179–188.PubMedCrossRefGoogle Scholar
  80. 80.
    Lissitzky, J. C., Bouzon, M., Loret, E., Poupor, M. F., and Martin, P. M., 1989, Laminin-mediated adhesion in metastatic rat rhabdomyosarcoma cell lines involves prominent interactions with the laminin E8 fragment, Clin. Exp. Metastasis 7:469–480.PubMedCrossRefGoogle Scholar
  81. 81.
    Albini, A., Aukerman, S. L., Ogle, R. C., Noonan, D. M., Fridman, R., Martin, G. R., and Fidler, I. J., 1989, The in vitro invasiveness and interactions with laminin of K-1735 melanoma cells. Evidence for different laminin-binding affinities in high and low metastatic variants, Clin. Exp. Metastasis 7:437–451.PubMedCrossRefGoogle Scholar
  82. 82.
    Ruoslahti, E., and Pierschbacher, M. D., 1986, Arg-Gly-Asp-: A versatile cell recognition signal, Cell 44: 517–529.PubMedCrossRefGoogle Scholar
  83. 83.
    Hayman, E. G., Pierschbacher, M. D., and Ruoslahti, E., 1985, Detachment of cells from culture substrate by soluble fibronectin peptides, J. Cell Biol. 100:1948–1954.PubMedCrossRefGoogle Scholar
  84. 84.
    Humphries, M. J., Olden, K., and Yamada, K. M., 1986, A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells, Science 233:467–470.PubMedCrossRefGoogle Scholar
  85. 85.
    Humphries, M. J., Yamada, K. M., and Olden, K., 1988, Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16–F10 murine melanoma cells, J. Clin. Invest. 81:782–790.PubMedCrossRefGoogle Scholar
  86. 86.
    Bretti, S., Neri, P., Lozzi, L., Rustici, M., Comoglio, P., Giancotti, F., and Tarone, G., 1989, Inhibition of experimental metastasis of murine fibrosarcoma cells by oligopeptide analogues to the fibronectin cell-binding site, Int. J. Cancer 43:102–106.PubMedCrossRefGoogle Scholar
  87. 87.
    Saiki, I., Murata, J., Iida, J., Nishi, N., Sugimura, K., and Azume, I., 1989, The inhibition of murine lung metastasis by synthetic polypeptides poly(arg-gly-asp) and poly(tyr-ile-gly-ser-arg) with a core sequence of cell adhesion molecules, Br. J. Cancer 59:194–197.PubMedCrossRefGoogle Scholar
  88. 88.
    Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D., and Ruoslahti, E., 1989, Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides, J. Cell Biol. 106:925–930.CrossRefGoogle Scholar
  89. 89.
    Kramer, R. H., McDonald, K. A., Crowley, E., Ramos, D. M., and Damsky, C. H., 1989, Melanoma cell adhesion to basement membrane mediated by integrin-related complexes, Cancer Res. 49:393–402.PubMedGoogle Scholar
  90. 90.
    Vollmers, H. P., and Birdmeier, W., 1983, Cell adhesion and metastasis: Monoclonal antibody approach, Trends Biochem. Sci. 8:452–455.CrossRefGoogle Scholar
  91. 91.
    Vollmers, H. P., Luihof, B. A., Braun, S., Walker, C. A., Schirrmacher, B., and Burchmeier, W., 1984, Monoclonal antibodies which prevent experimental lung metastasis, FEBS Lett. 172:17–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Iminura, T., and Nicolson, G. L., 1981, The role of glycoconjugates in metastatic melanoma blood-borne arrest and cell surface properties, J. Supramol. Struct. Cell Biochem. 17:325–336.CrossRefGoogle Scholar
  93. 93.
    Lichtner, R. B., Erkell, L. J., Schirrmacher, V., and Nicolson, G. L., 1989, Effects of RA 233 treatment on the adhesive, invasive and metastatic properties of 13762NF rat mammary tumor cells, Clin. Exp. Metastasis 7:175–186.PubMedCrossRefGoogle Scholar
  94. 94.
    Dennis, J. W., Laferte, S., Waghorne, C., Breitman, J. L., and Kerbel, R. S., 1987, Beta 1–6 branching of ASN-linked oligosaccharides is directly associated with metastasis, Science 236:582–585.PubMedCrossRefGoogle Scholar
  95. 95.
    Elvin, P., and Evans, C. W., 1984, Cell adhesion and experimental metastasis: A study using the B16 malignant model system, Eur. J. Cancer Clin. Oncol. 20:107–114.PubMedCrossRefGoogle Scholar
  96. 96.
    Fornabaio, D. M., Alterman, A. L., and Stackpole, C. W., 1988, Metastatic dissemination of B16 melanoma: Evidence that metastases can result from non-specific trapping of disseminated tumor cells, Invasion Metastasis 8:1–16.PubMedGoogle Scholar
  97. 97.
    Sargent, N. S. E., Oestreicher, M., Haidvogl, H., Madnick, H. M., and Burger, M. M., 1988, Growth regulation of cancer metastases by their host organ, Proc. Natl. Acad. Sci. USA 85:7251–7255.PubMedCrossRefGoogle Scholar
  98. 98.
    Weiss, L., Harlos, J. P., Torhorst, J., Gunthard, B., Hartveit, F., Svendson, E., Huang, W.-L., Grauduiann, E., Eder, M., Zwicknagl, M., Cochrane, E. R., Stock, D., Wright, C., and Horne, C., 1988, Metastatic pattern of renal carcinoma; An analysis of 687 necropsies, Cancer Res. Clin. Oncol. 114:605–612.CrossRefGoogle Scholar
  99. 99.
    Weiss, L., 1988, Biomechanical destruction of cancer cells in the heart: A rate-regulator for hematogenous metastasis, Invasion Metastasis 8:228–237.PubMedGoogle Scholar
  100. 100.
    Weiss, L., 1989, Biomechanical destruction of cancer cells in skeletal muscle: A rate-regulator for hematogenous metastasis, Clin. Exp. Metastasis 7:483–491.PubMedCrossRefGoogle Scholar
  101. 101.
    Weiss, L., 1980, Cancer cell traffic from the lungs to the liver: An example of metastatic inefficiency, Int. J. Cancer 25:385–892.PubMedCrossRefGoogle Scholar
  102. 102.
    Weiss, L., Ward, P. M., and Holmes, J. C., 1983, Liver-to-lung traffic of cancer cells, Int. J. Cancer 32: 79–83.PubMedCrossRefGoogle Scholar
  103. 103.
    Weiss, L., 1987, The hemodynamic destruction of circulating cancer cells, Biorheology 24:105–115.PubMedGoogle Scholar
  104. 104.
    Weiss, L., and Schmid-Schonbein, G. W., 1989, Biomechanical interactions of cancer cells with the microvasculature during metastasis, Cell Biophys. 14:187–215.PubMedGoogle Scholar
  105. 105.
    Weiss, L., Harlos, J. P., and Elkin, G., 1989, Mechanism of mechanical trauma to Ehrlich ascites tumor cells in vitro and its relationship to rapid intravascular death during metastasis, Int. J. Cancer 44:143–149.PubMedCrossRefGoogle Scholar
  106. 106.
    Weiss, L., Harlos, J. P., Elkin, G., and Bixler, B., 1990, Mechanisms for the biomechanical destruction of L1210 leukemia cells: A rate-regulator for metastasis, Cell Biophys. 16:149–159.PubMedGoogle Scholar
  107. 107.
    Gabor, H., and Weiss, L., 1985, Mechanically induced trauma suffered by cancer cells in passing through pores in polycarbonate membranes, Invasion Metastasis 5:71–83.PubMedGoogle Scholar
  108. 108.
    Ingber, D. E., and Folkman, J., 1989, Tension and comprehension as basic determinants of cell form and function. Utilization of a cellular tensegrity mechanism, in: Cell Shape (W D. Stein and F. Brouner, eds.), Academic Press, New York.Google Scholar
  109. 109.
    Halliwell, B., 1989, Superoxide anion, vascular endothelium and reperfusion injury, Free Radical Res. Commun. 5:315–318.CrossRefGoogle Scholar
  110. 110.
    Glaves, D., 1986, Intravascular death of disseminated cancer cells mediated by superoxide anion, Invasion Metastasis 6:101–111.PubMedGoogle Scholar
  111. 111.
    Orr, F. W., Adamson, I. Y. R., and Young, L., 1986, Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury, Cancer Res. 46:891–897.PubMedGoogle Scholar
  112. 112.
    Vincic, L., Orr, F. W., Warner, D. J. A., Suyama, K. L., and Kay, J. M., 1989, Enhanced cancer metastasis after monocrotaline-induced lung injury, Toxicol. Appl. Pharmacol. 100:259–270.PubMedCrossRefGoogle Scholar
  113. 113.
    Richters, A., and Richters, V., 1989, Nitrogen dioxide (NO2) inhalation, formation of microthrombi in lungs and cancer metastasis, J. Environ. Pathol. Toxicol. Oncol. 9(1):45–51.PubMedGoogle Scholar
  114. 114.
    Adamson, I. Y. R., Young, L., and Orr, F. W., 1987, Tumor metastasis after hyperoxic injury and repair of the pulmonary endothelium, Lab. Invest. 57:71–77.PubMedGoogle Scholar
  115. 115.
    Hirata, H., and Tanaka, K., 1984, Artificial metastases and decrease of fibrinolysis in the nude mouse lung after hemithoracic irradiation, Clin. Exp. Metastasis 2:311–319.PubMedCrossRefGoogle Scholar
  116. 116.
    Dao, T. L., and Yogo, H., 1967, Enhancement of pulmonary metastases by X-irradiation in rats bearing mammary cancer, Cancer 20:2020–2025.PubMedCrossRefGoogle Scholar
  117. 117.
    Nicolson, G. L., and Custead, S. E., 1985, Effects of chemotherapeutic drugs on platelet and metastatic tumor cell-endothelial cell interactions as a model for assessing vascular endothelial integrity, Cancer Res. 45:331–336.PubMedGoogle Scholar
  118. 118.
    Adamson, I. Y. R., Orr, F. W., and Young, L., 1986, Effects of injury and repair of the pulmonary endothelium on lung metastasis after bleomycin, J. Pathol. 150:279–287.PubMedCrossRefGoogle Scholar
  119. 119.
    Orr, F. W., Adamson, I. Y. R., Warner, D. J. A., Leroyer, V., Werner, L., Shaughnessy, S., and Young, L., 1988, Brief Review: The effects of oxygen radical-mediated pulmonary endothelial damage on cancer metastasis, Mol. Cell. Biochem. 84:189–198.PubMedCrossRefGoogle Scholar
  120. 120.
    Shaughnessy, S. G., Warner, D., Buchanan, M. R., Lafrenie, R., and Orr, F. W., 1991, The effects of oxygen radical-mediated pulmonary endothelial damage on cancer metastasis, in: Proceedings of the First International Conference on Eicosanoids and Bioactive Lipids in Cancer and Radiation Injury (K. Honn, ed.), Kluwer, Boston, Massachusetts, pp. 147–156.CrossRefGoogle Scholar
  121. 121.
    Orr, F. W., Buchanan, M. R., Tron, V. A., et al., 1988, Chemotactic activity of endothelial cell-derived interleukin-1 for human tumor cells, Cancer Res. 48:6758–6763.PubMedGoogle Scholar
  122. 122.
    Zucker, S., Beck, G., DiStefano, J. F., and Lysik, R. M., 1985, Role for different cell proteinases in cancer invasion and cytolysis, Br. J. Cancer 52:223–232.PubMedCrossRefGoogle Scholar
  123. 123.
    Brizzo, P., Morisset, M., Capony, F., Rougeot, C., and Rochefort, H., 1988, In vitro degradation of extracellular matrix with Mr52,000 cathepsin D secreted by breast cancer cells, Cancer Res. 48:3688–3692.Google Scholar
  124. 124.
    Nakajima, M., Welch, D. R., Belloni, P. N., and Nicolson, G. L., 1987, Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials, Cancer Res. 47:4869–4876.PubMedGoogle Scholar
  125. 125.
    Masure, S., and Opdenakker, G., 1989, Cytokine-mediated proteolysis in tissue remodelling, Experientia 45:542–549.PubMedCrossRefGoogle Scholar
  126. 126.
    Pauli, B. U., and Knudson, W., 1988, Tumor invasion: A consequence of destructive and compositional matrix alterations, Hum. Pathol. 19:628–639.PubMedCrossRefGoogle Scholar
  127. 127.
    Goldfarb, R. H., and Liotta, L. A., 1986, Proteolytic enzymes in cancer invasion and metastasis, Semin. Thromb. Hemostasis 12:294–307.CrossRefGoogle Scholar
  128. 128.
    Turpeenniemi-Hujanen, T., Thorgeirsson, U. P., Hart, I. R., Grant, S. S., and Liotta, L. A., 1985, Expression of collagenase IV (basement membrane collagenase) activity in murine tumor cell hybrids that differ in metastatic potential, J. Natl. Cancer Inst. 75:99–103.PubMedGoogle Scholar
  129. 129.
    Leroyer, V., Werner, L., Shaughnessy, S., Goddard, G. J., and Orr, F. W., 1987, Chemiluminescence and oxygen radical generation by Walker carcinosarcoma cells following chemotactic stimulation, Cancer Res. 47:4771–4775.PubMedGoogle Scholar
  130. 130.
    Varani, J., Ginsburg, I., Schuger, L., Gibbs, D. F., Bromberg, J., Johnson, K. J., Ryan, U. S., and Ward, P. A., 1989, Rapid Communication. Endothelial cell killing by neutrophils, Am. J. Pathol. 135:435–438.PubMedGoogle Scholar
  131. 131.
    Marcus, A. J., Silk, S. T., Safier, L. B., and Ullman, H. L., 1977, Superoxide production and reducing activity in human platelets, J. Clin. Invest. 59:149–158.PubMedCrossRefGoogle Scholar
  132. 132.
    Joseph, M., Capron, A., Tsicopoulos, A., Ameisen, J. C., Martinot, J. B., and Tonnel, A. B., 1987, Platelet activation by IgE and aspirin, Agents Action 21(Suppl.):169–177.Google Scholar
  133. 133.
    Weiss, S. J., Peppin, G., Ortiz, X., Ragsdale, C., and Test, S. T., 1985, Oxidative autoactivation of latent collagenase by human neutrophils, Science 227:747–749.PubMedCrossRefGoogle Scholar
  134. 134.
    Shah, S. V., Baricos, W. H., and Basci, A., 1987, Degradation of human glomerular basement membrane by stimulated neutrophils: Activation of a metalloproteinase(s) by reactive oxygen metabolites, J. Clin. Invest. 79:25–31.PubMedCrossRefGoogle Scholar
  135. 135.
    Campbell, E. J., Senior, R. M., and McDonald, J. A., 1982, Proteolysis by neutrophils: Relative importance of cell-surface contact and oxidative inactivation of proteinase inhibitors in vitro, J. Clin. Invest. 70:845–852.PubMedCrossRefGoogle Scholar
  136. 136.
    Weiss, S. J., and Regiani, S., 1984, Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor: Cooperative use of lysosomal proteinases and oxygen metabolites, J. Clin. Invest. 73: 1297–1303.PubMedCrossRefGoogle Scholar
  137. 137.
    Dean, R. T., Nick, H. P., and Schnebli, H. P., 1989, Free radicals inactivate human neutrophil elastase and its inhibitors with comparable efficiency, Biochem. Biophys. Res. Commun. 159:821–827.PubMedCrossRefGoogle Scholar
  138. 138.
    Ostrowski, L. E., Ahsan, A., Suther, B. P., Pagast, P., Bain, D. L., Wong, C., Patal, A., and Schultz, R. M., 1986, Selective inhibition of proteolytic enzymes in an in vivo mouse model for experimental metastasis, Cancer Res. 46:4121–4128.PubMedGoogle Scholar
  139. 139.
    Orr, F. W., and Warner, D. J. A., 1987, Effects of neutrophil-mediated pulmonary endothelial injury on the localization and metastasis of circulating Walker carcinosarcoma cells, Invasion Metastasis 7:183–196.PubMedGoogle Scholar
  140. 140.
    Starkey, R., Liggitt, H. D., Jones, W., and Hosick, H. L., 1984, Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium, Int. J. Cancer 34:535–543.PubMedCrossRefGoogle Scholar
  141. 141.
    Orr, F. W., and Mokashi, S., 1985, Effects of leukocyte activation on the formation of heterotypic tumour-cell aggregates in vitro, Int. J. Cancer 35:101–106.PubMedCrossRefGoogle Scholar
  142. 142.
    Wood, S., 1958, Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber, Arch. Pathol. 66:550–568.Google Scholar
  143. 143.
    Shoenfeld, Y., Tal, A., Berliner, S., and Pinkhas, J., 1986, Leukocytosis in non-hematological malignancies—A possible tumour-associated marker, J. Cancer Res. Clin. Oncol. 111:54–58.PubMedCrossRefGoogle Scholar
  144. 144.
    Ishikawa, M., Koga, Y., Hosokawa, M., and Kobayashi, H., 1986, Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis, Int. J. Cancer 37:919–924.PubMedCrossRefGoogle Scholar
  145. 145.
    Aeed, P. A., Nakajima, M., and Welch, D., 1988, The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells, Int. J. Cancer 42:748–759.PubMedCrossRefGoogle Scholar
  146. 146.
    Orr, F. W., Adamson, I.Y.R., and Young, L., 1985, Pulmonary inflammation generates chemotactic activity for tumor cells and promotes lung metastasis, Am. Rev. Respir. Dis. 131:607–611.PubMedGoogle Scholar
  147. 147.
    Van Den Brenk, H. A. S., Stone, M., Kelly, H., Orton, C., and Sharpington, C., 1974, Promotion of growth of tumour cells in acutely inflamed tissues, Br. J. Cancer 30:246–260.CrossRefGoogle Scholar
  148. 148.
    Orr, F. W., and Warner, D. J. A., 1990, Effects of systemic complement activation and neutrophil-mediated pulmonary injury on the retention and metastasis of circulating cancer cells in mouse lungs, Lab. Invest. 62:331–338.PubMedGoogle Scholar
  149. 149.
    Glaves, D., 1983, Role of polymorphonuclear leukocytes in the pulmonary clearance of arrested cancer cells, Invasion Metastasis 3:160–173.PubMedGoogle Scholar
  150. 150.
    Jones, C. L., Nelson, K. K., Hatfield, J. S., Honn, K. V., and Onoda, J. M., 1988, Regulation of metastasis by polymorphonuclear neutrophils, Proc. Am. Assoc. Cancer Res. 29:62 (Abstract).Google Scholar
  151. 151.
    Gasic, G. J., Gasic, T. B., and Stewart, C. O., 1968, Antimetastatic effect associated with platelet reduction, Proc. Natl. Acad. Sci. USA 61:46–52.PubMedCrossRefGoogle Scholar
  152. 152.
    Gasic, G., 1984, Role of plasma, platelets, and endothelial cells in tumor metastasis, Cancer Metastasis Rev. 3:99–114.PubMedCrossRefGoogle Scholar
  153. 153.
    Cavanaugh, P. G., Sloane, B. F., and Honn, K. V., 1988, Role of the coagulation system in tumor-cell-induced platelet aggregation and metastasis, Haemostasis 18:37–46.PubMedGoogle Scholar
  154. 154.
    Bastida, E., and Ordinas, A., 1988, Platelet contribution to the formation of metastatic foci: The role of cancer cell-induced platelet activation, Haemostasis 18:29–36.PubMedGoogle Scholar
  155. 155.
    Tohgo, A., Tanaka, N. G., and Ogawa, H., 1986, Platelet-aggregating activities of metastasizing tumor cells. IV. Effects of cell surface modification on thrombin generation, platelet aggregation and subsequent lung colonization, Invasion Metastasis 6:58–68.PubMedGoogle Scholar
  156. 156.
    Longenecker, G. L., Beyers, B. J., Bowen, R. J., and King, T., 1989, Human rhabdosarcoma cell-induced aggregation of blood platelets, Cancer Res. 49:16–19.PubMedGoogle Scholar
  157. 157.
    Ugen, K. E., Mahalingam, M., Klein, P. A., and Kao, K. J., 1988, Inhibition of tumor cell-induced platelet aggregation and experimental tumor metastasis by the synthetic gly-arg-gly-asp-ser peptide, J. Natl. Cancer Inst. 80:1461–1466.PubMedCrossRefGoogle Scholar
  158. 158.
    Karpatkin, S., Pearlstein, E., Ambrogio, C., and Coller, B. S., 1988, Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo, J. Clin. Invest. 81:1012–1019.PubMedCrossRefGoogle Scholar
  159. 159.
    Karpatkin, S., Ambrogio, C., and Pearlstein, E., 1988, The role of tumor-induced platelet aggregation, platelet adhesion and adhesive proteins in tumor metastasis, in: Platelet Membrane Receptors: Molecular Biology, Immunology, Biochemistry, and Pathology (G. A. Jamieson, ed.), A. R. Liss, New York.Google Scholar
  160. 160.
    Poggi, A., Vicenzi, E., Cioce, V., and Wasteson, A., 1988, Platelet contribution to cancer cell growth and migration: The role of platelet growth factors, Haemostasis 18:18–28.PubMedGoogle Scholar
  161. 161.
    Wallace, A. C., Chew, E.-C., and Jones, D. S., 1977, Arrest and extravasation of cancer cells in the lung, in: Lung Metastasis (L. Weiss and M. A. Gilbert, eds.), Hall, Boston, p. 26.Google Scholar
  162. 162.
    Crissman, J., Hatfield, J. S., Menter, D. G., Sloane, B., and Honn, K. V., 1988, Morphological study of interaction of intravascular tumor cells with endothelial cells and subendothelial matrix, Cancer Res. 48: 4065–4072.PubMedGoogle Scholar
  163. 163.
    Weiss, L., 1985, Principles of Metastasis, Academic Press, Orlando, Florida, p. 109.Google Scholar
  164. 164.
    Menter, D. G., Steinest, B. W., Sloane, B. F., Taylor, J. D., and Honn, K. V., 1987, A new in vitro model for investigation of tumor cell-platelet-endothelial cell interactions and concomitant eicosanoid biosynthesis, Cancer Res. 47:2425–2432.PubMedGoogle Scholar
  165. 165.
    Kramer, R. H., and Nicolson, G. L., 1979, Interactions of tumor cells with vascular endothelial monolayers: A model for metastatic invasion, Proc. Natl. Acad. Sci. USA 76:5704–5708.PubMedCrossRefGoogle Scholar
  166. 166.
    Zamora, P. O., Danielson, K. G., and Hosick, H. L., 1980, Invasion of endothelial cell monolayers on collagen gels by cells from mammary tumor spheroids, Cancer Res. 40:4631–4639.PubMedGoogle Scholar
  167. 167.
    Honn, K. V., Grossi, I. M., Diglio, C. A., Wojtukiewicz, M., and Taylor, J. D., 1989, Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction, FASEB J. 3:2285–2293.PubMedGoogle Scholar
  168. 168.
    Menter, D. G., Steinest, B. W., Sloane, B. F., Gundlach, N., O’Gara, C. Y., Marne«, L. J., Diglio, C., Walz, D., and Honn, K. V., 1987, Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix, Cancer Res. 47:6751–6762.PubMedGoogle Scholar
  169. 169.
    Menter, D. G., Sloane, B. F., Steinert, B.W., Onoda, J. M., Craig, R., Hawkins, C., Taylor, J. D., and Honn, K. V., 1987, Platelet enhancement of tumor cell adhesion to subendothelial matrix. Role of platelet cytoskeleton and platelet membrane, J. Natl. Cancer Inst. 79:1077–1098.PubMedGoogle Scholar
  170. 170.
    Skolnik, G., Alpsten, M., and Ivarson, L., 1980, Studies on mechanisms involved in metastasis formation from circulating tumor cells, J. Cancer Res. Clin. Oncol. 97:249–256.PubMedCrossRefGoogle Scholar
  171. 171.
    Skolnik, G., Ericson, L. E., and Bagge, U., 1983, The effect of thrombocytopenia and antiserotohin treatment on the lodgment of circulating tumor cells, J. Cancer Res. Clin. Oncol. 105:30–37.PubMedCrossRefGoogle Scholar
  172. 172.
    Glaves, D., and Weiss, L., 1978, Initial tumor cell arrest in animals of defined coagulative states, Int. J. Cancer 21:741–746.PubMedCrossRefGoogle Scholar
  173. 173.
    Weiss, L., 1985, Principles of Metastasis, Academic Press, Orlando, Florida, p. 200.Google Scholar
  174. 174.
    Merriman, R. L., Shacketford, K. A., Tanzer, L. R., Campbell, J. B., and Bernis, J. B., 1989, Drug treatments for metastasis of Lewis lung carcinoma: Lack of correlation between inhibition of lung metastasis and survival, Cancer Res. 49:4509–4511.PubMedGoogle Scholar
  175. 175.
    Hagmar, B., and Boeryd, B., 1969, Disseminating effect of heparin on experimental tumour metastasis, Pathol. Eur. 4:274–282.PubMedGoogle Scholar
  176. 176.
    Sindelar, W. F., Tralka, T. S., and Ketcham, A. S., 1975, Electron microscopic observations on formation of pulmonary metastases, J. Surg. Res. 18:137–161.PubMedCrossRefGoogle Scholar
  177. 177.
    Machado, E. A., Gerard, D. A., Mitchell, J. R., Lozzio, B. B., and Lozzio, C. B., 1982, Arrest and extravasation of neoplastic cells, Virchows Arch. A 396:73–89.Google Scholar
  178. 178.
    Nakamura, K., Kawaguchi, T., Asahina, S., Sakura, T., Ebina, Y., Yokoya, S., and Morita, M., 1977, Electron microscopic studies on extravasation of tumor cells and early foci of hematogenous metastases, Gann Monogr. 1977:57–71.Google Scholar
  179. 179.
    Lapis, K., Paku, S., and Liotta, L. A., 1988, Endothelialization of embolized tumor cells during metastasis formation, Clin. Exp. Metastasis 6:73–89.PubMedCrossRefGoogle Scholar
  180. 180.
    D’Amore, P. A., and Thompson, R. W., 1987, Mechanisms of angiogenesis, Annu. Rev. Physiol. 49: 453–464.PubMedCrossRefGoogle Scholar
  181. 181.
    Folkman, J., 1985, Toward an understanding of angiogenesis: Search and discovery, Perspect. Biol. Med. 29: 10–36.PubMedGoogle Scholar
  182. 182.
    Gross, J. L., Moscatelli, D., and Rifkin, D. B., 1983, Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro, Proc. Natl. Acad. Sci. USA 80:2623–2627.PubMedCrossRefGoogle Scholar
  183. 183.
    Pepper, M. S., Vassalli, J.-D., Moutesano, R., and Orci, L., 1987, Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells, J. Cell Biol. 105:2535–2541.PubMedCrossRefGoogle Scholar
  184. 184.
    Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.PubMedCrossRefGoogle Scholar
  185. 185.
    Furcht, L. T., 1986, Cortical factors controlling angiogenesis: Cell products, cell matrix, and growth factors, Lab. Invest. 55:505–509.PubMedGoogle Scholar
  186. 186.
    Warren, B. A., 1979, Tumor angiogenesis, in: Tumor Blood Circulation (H.-I. Peterson, ed.), CRC Press, Boca Raton, p. 49.Google Scholar
  187. 187.
    Vehoeven, D., and Buyssens, N., 1988, Desmin-positive stellate cells associated with angiogenesis in a tumour and non-tumour system, Virchows Arch. B 54:263–272.CrossRefGoogle Scholar
  188. 188.
    Thompson, W. D., Shiach, K. J., Fraser, R. A., Mcintosh, L. C., and Simpson, J. G., 1987, Tumors acquire their vasculature by vessel incorporation, not vessel ingrowth, J. Pathol. 151:323–332.PubMedCrossRefGoogle Scholar
  189. 189.
    Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–447.PubMedCrossRefGoogle Scholar
  190. 190.
    Folkman, J., and Ingber, D. E., 1987, Angiostatic steroids, Ann. Surg. 206:374–383.PubMedCrossRefGoogle Scholar
  191. 191.
    Folkman, J., Weisz, P. B., Joullie, M., Li, W. W., and Ewing, W. R., 1989, Control of angiogenesis with synthetic heparin substitutes, Science 243:1490–1493.PubMedCrossRefGoogle Scholar
  192. 192.
    D’Amore, P. A., 1988, Antiangiogenesis as a strategy for antimetastasis, Semin. Thromb. Hemostasis 14: 73–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Leonard Weiss
    • 1
  • F. William Orr
    • 2
  1. 1.Department of Experimental PathologyRoswell Park Memorial InstituteBuffaloUSA
  2. 2.Department of PathologyMcMaster UniversityHamiltonCanada

Personalised recommendations