Skip to main content

Cellular and Molecular Mechanism of Glucose-Induced Diabetic Microangiopathy

  • Chapter
Endothelial Cell Dysfunctions
  • 78 Accesses

Abstract

The cellular and biochemical changes which occur as a result of diabetes mellitus all can be traced, albeit both directly and indirectly, to elevated blood glucose concentrations. The eventual cure of this disease will result from our understanding of insulin synthesis by the pancreatic beta cell. Until this time, treatments for the pathologic sequelae of diabetic hyperglycemia will continue to be a major effort in diabetes research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakamoto, N., Kinoshita, J. H., Kador, P. F., and Hotta, N. (eds.), 1988, Polyol pathway and its role in diabetic complications, in: Excerpta Medica International Congress Series 760, Elsevier, Amsterdam.

    Google Scholar 

  2. Engerman, R., Bloodworm, J. M. B., Jr., and Nelson, S., 1977, Relationship of microvascular diabetes to metabolic control, Diabetes 26:760–769.

    Article  PubMed  CAS  Google Scholar 

  3. Kador, P. F., 1988, The role of aldose reductase in the development of ocular diabetic complications, in: Complications of Diabetes Mellitus, Vol. 3 (B. Draznin, S. Melmed, and D. LeRoith, eds.), Liss, New York, pp. 103–114.

    Google Scholar 

  4. Kador, P. F., Robison, W. G., Jr., and Kinoshita, J. H., 1985, Pharmacology of aldose reductase inhibitors, Annu. Rev. Pharmacol. Toxicol. 25:691–714.

    Article  PubMed  CAS  Google Scholar 

  5. Brownlee, M., Vlassara, H., and Cerami, A., 1984, Nonenzymatic glycosylation and the pathogenesis of diabetic complications, Ann. Intern. Med. 101:527–537.

    Article  PubMed  CAS  Google Scholar 

  6. Yue, D. K., Morris, K., McLennas, S., and Turtle, J. R., 1980, Glycosylation of plasma protein and its relation to glycosylated hemoglobin in diabetes, Diabetes 29:296–300.

    PubMed  CAS  Google Scholar 

  7. Dolhoffer, R., and Wieland, O. H., 1979, Glycosylation of serum albumin: Elevated glycosyl-albumin in diabetic patients, FEBS Lett. 103:282–286.

    Article  Google Scholar 

  8. Eble, A. S., Thorpe, S. R., and Baynes, J. W., 1983, Nonenzymatic glucosylation and glucose-dependent cross-linking of protein, J. Biol. Chem. 258:9406–9412.

    PubMed  CAS  Google Scholar 

  9. Day, J. F., Thornburg, R. W., Thorpe, S. R., and Baynes, J. W., 1979, Nonenzymatic glucosylation of rat albumin, J. Biol. Chem. 254:9394–9400.

    PubMed  CAS  Google Scholar 

  10. Olufemi, S., Talwar, D., and Robb, D. A., 1987, The relative extent of glycation of haemoglobin and albumin, Clin. Chim. Acta 163:125–136.

    Article  PubMed  CAS  Google Scholar 

  11. Monnier, V. M., and Cerami, A., 1981, Nonenzymatic browning in vivo: Possible process for aging of long-lived proteins, Science 211:491–493.

    Article  PubMed  CAS  Google Scholar 

  12. Armbruster, D. A., 1987, Fructosamine: Structure, analysis, and clinical usefulness, Clin. Chem. 33:2153–2163.

    PubMed  CAS  Google Scholar 

  13. Brownlee, M., 1988, The role of nonenzymatic glycosylation in the pathogenesis of diabetic angiopathy, in: Complications of Diabetes Mellitus, Vol. 3 (B. Draznin, S. Melmed, and D. LeRoith, eds.), Liss, New York, pp. 9–17.

    Google Scholar 

  14. Pongor, S., Ulrich, P. C., Bencsath, F. A., and Cerami, A., 1984, Aging of proteins: Isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose, Proc. Natl. Acad. Sci. USA 81:2684–2688.

    Article  PubMed  CAS  Google Scholar 

  15. Rothschild, M. A., Oratz, M., and Schreiber, S. S., 1988, Serum albumin, Hepatology 8:385–401.

    Article  PubMed  CAS  Google Scholar 

  16. Williams, S. K., Devenny, J. J., and Bitensky, M. W., 1981, Micropinocytic ingestion of glycosylated albumin by isolated microvessels: Possible role in pathogenesis of diabetic microangiopathy, Proc. Natl. Acad. Sci. USA 78:2393–2397.

    Article  PubMed  CAS  Google Scholar 

  17. Williams, S. K., and Solenski, N. J., 1984, Enhanced vesicular ingestion of nonenzymatically glucosylated proteins by capillary endothelium, Microvasc. Res. 28:311–321.

    Article  PubMed  CAS  Google Scholar 

  18. Ghiggeri, G. M., Candiano, G., Delfino, G., and Queirolo, C., 1984, Glycosyl albumin and diabetic microalbuminuria: Demonstration of an altered renal handling, Kidney Int. 25:565–570.

    Article  PubMed  CAS  Google Scholar 

  19. McVerry, B. A., Hopp, A., Fisher, C., and Huehns, E. R., 1980, Production of pseudodiabetic renal glomerular changes in mice after repeated injections of glucosylated proteins, Lancet 1:738–740.

    Article  PubMed  CAS  Google Scholar 

  20. Kowluru, A., Kowluru, R., Bitensky, M. W., Corwin, E.-J., Solomon, S. S., and Johnson, J. D., 1987, Suggested mechanism for the selective excretion of glucosylated albumin. The effects of diabetes mellitus and aging on this process and the origins of diabetic microalbuminuria, J. Exp. Med. 166:1259p–1279.

    Article  PubMed  CAS  Google Scholar 

  21. Villaschi, S., Johns, L., Cirigliano, M., and Pietra, G., 1986, Binding and uptake of native and glycosylated albumin-gold complexes in perfused rat lungs, Microvasc. Res. 32:190–199.

    Article  PubMed  CAS  Google Scholar 

  22. Layton, G. J., and Jerums, G., 1988, Effect of glycation of albumin on its renal clearance in normal and diabetic rats, Kidney Int. 33:673–676.

    Article  PubMed  CAS  Google Scholar 

  23. Sampietro, T., Colantuoni, A., Lenzi, S., Berguglia, S., Bionda, A., and Donato, L., 1987, Increased permeability of hamster microcirculation to glycosylated albumin, Lancet 2:994–996.

    Article  PubMed  CAS  Google Scholar 

  24. Mereish, K. A., Rosenberg, H., and Cobby, J., 1982, Glycosylated albumin and its influence on salicylate binding, J. Pharm. Sci. 71:235–238.

    Article  PubMed  CAS  Google Scholar 

  25. Tsuchiya, S., Sakurai, T., and Sekiguchi, S., 1984, Nonenzymatic glucosylation of human serum albumin and its influence on binding capacity of sulfonylureas, Biochem. Pharmacol. 33:2967–2971.

    Article  PubMed  CAS  Google Scholar 

  26. Garlick, R. L., and Mazer, J. S., 1983, The principal site of nonenzymatic glycosylation of human serum albumin in vivo, J. Biol. Chem. 258:6142–6146.

    PubMed  CAS  Google Scholar 

  27. Bohney, J. P., Fonda, M. L., and Feldhoff, R. C., 1989, Nonenzymatic glycosylation and pyridozylation of human serum albumin: Site-specificity of Schiff base and ketoamine formation, FASEB J. 3:A926.

    Google Scholar 

  28. Williams, S. K., and Siegal, R. K., 1985, Preferential transport of nonenzymatically glucosylated ferritin across the kidney glomerulus, Kidney Int. 28:146–152.

    Article  PubMed  CAS  Google Scholar 

  29. Predescu, D., Simionescu, M., Simionescu, N., and Palade, G. E., 1988, Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: Evidence that glycoalbumin behaves as a bifunctional ligand, J. Cell Biol. 107:1729–1738.

    Article  PubMed  CAS  Google Scholar 

  30. Williams, S. K., Carter, D., McKenney, S. L., and Rose, D. G., 1988, Solubility dependent endocytosis of proteins by vascular endothelium, FASEB J. 2:A945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, S.K. (1992). Cellular and Molecular Mechanism of Glucose-Induced Diabetic Microangiopathy. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Dysfunctions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0721-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0721-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0723-3

  • Online ISBN: 978-1-4899-0721-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics