Mechanisms of Neutrophil Migration across Endothelium

  • Ada J. Huang
  • Samuel C. Silverstein


Polymorphonuclear leukocytes (PMN) arise in the bone marrow and travel within the vascular compartment. Their final destination is in the extravascular tissues where they perform most of their effector functions. A critical and precisely regulated step in an inflammatory response is the movement of PMN across the endothelium. It is now clear that there are at least two distinct mechanisms by which PMN cross the endothelium in response to inflammatory stimuli, a PMN-initiated mechanism and an endothelial cell (EC)-initiated mechanism.


Human Umbilical Vein Endothelial Cell Evans Blue Neutrophil Migration Endothelial Monolayer Human Umbilical Vein Endothelial Cell Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zimmerman, G. A., McIntyre, T. M., Mehra, M., and Prescott, S. M., 1990, Endothelial cell-associated platelet-activating factor: A novel mechanism for signaling intercellular adhesion, J. Cell Biol. 110:529–540.PubMedCrossRefGoogle Scholar
  2. 2.
    Bevilacqua, M. P., Pober, I S., Mendrick, D. L., Cotran, R. S., and Gimbrone, M. A., 1987, Identification of an inducible endothelial-leukocyte adhesion molecule, Proc. Natl. Acad. Sci. USA 84:9238–9242.PubMedCrossRefGoogle Scholar
  3. 3.
    Heltianu, C., Simionescu, M., and Simionescu, N., 1982, Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: Characteristic high affinity binding sites in venules, J. Cell Biol. 93:357–364.PubMedCrossRefGoogle Scholar
  4. 4.
    Olesen, S. P., and Crone, C., 1983, Electrical resistance of muscle capillary endothelium, Biophys. J. 42: 31–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Palade, G. E., Simionescu, M., and Simionescu, N., 1979, Structural aspects of the permeability of the microvascular endothelium, Acta Physiol. Scand. Suppl. 463:11–32.PubMedGoogle Scholar
  6. 6.
    Taylor, R. F., Price, T. H., Schwartz, S. M., and Dale, D. C., 1981, Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters, J. Clin. Invest. 67:584–587.PubMedCrossRefGoogle Scholar
  7. 7.
    King, G. L., and Johnson, S. M., 1985, Receptor-mediated transport of insulin across endothelial cells, Science 227:1583–1586.PubMedCrossRefGoogle Scholar
  8. 8.
    Furie, M. B., Cramer, E. B., Naprstek, B. L., and Silverstein, S. C., 1984, Cultured endothelial monolayers that restrict the transendothelial passage of macromolecules and electrical current, J. Cell Biol. 98:1033–1041.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang, A. J., Furie, M. B., Nicholson, S. C., Fischbarg, J., Leibovitch, L. S., and Silverstein, S. C., 1988, Effects of human neutrophil Chemotaxis across human endothelial cell monolayers on the permeability of these monolayers to ions and macromolecules, J. Cell. Physiol. 135:355–366.PubMedCrossRefGoogle Scholar
  10. 10.
    Zweifach, B.W., 1973, Microvascular aspects of tissue injury, in: The Inflammatory Process, Vol. 2 (B. W. Zweifach, L. Grant, and R. T. McCluskey, eds.), Academic Press, New York, pp. 3–46.Google Scholar
  11. 11.
    Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  12. 12.
    Crone, C., and Christensen, O., 1981, Electrical resistance of a capillary endothelium, J. Gen. Physiol. 77:349–371.PubMedCrossRefGoogle Scholar
  13. 13.
    Olesen, S. P., Saint-Aubain, M. L. de, and Bundgaard, M., 1984, Permeabilities of single arterioles and venules in the frog skin: A morphologic study, Microvasc. Res. 28:1–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Territo, M., Berliner, J. A., and Fogelman, A. M., 1984, Effect of monocyte migration on low density lipoprotein transport across aortic endothelial cell monolayers, J. Clin. Invest. 74:2279–2284.PubMedCrossRefGoogle Scholar
  15. 15.
    Shasby, D. M., and Shasby, S. S., 1986, Effects of calcium on transendothelial albumin transfer and electrical resistance, J. Appl. Physiol. 60:71–79.PubMedGoogle Scholar
  16. 16.
    Crone, C., and Olesen, S. P., 1982, Electrical resistance of brain microvascular endothelium, Brain Res. 241:49–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Rutten, M. J., Hoover, R. L., and Karnovsky, M. J., 1987, Electrical resistance and macromolecular permeability of brian endothelial monolayer cultures, Brain Res. 425:301–310.PubMedCrossRefGoogle Scholar
  18. 18.
    Furie, M. B., Naprstek, B. L., and Silverstein, S. C., 1987, Migration of neutrophils across monolayers of cultured microvascular endothelial cells: An in vitro model of leukocyte extravasation, J. Cell Sci. 88: 161–175.PubMedGoogle Scholar
  19. 19.
    Taylor, A. E., and Granger, D. N., 1984, Exchange of macromolecules across the microcirculation, in: Handbook of Physiology: The Cardiovascular System, Vol. 4 (E. M. Renkin and C. C. Michel, eds.), Williams & Wilkins, Baltimore, pp. 467–520.Google Scholar
  20. 20.
    Michel, C. C., 1984, Fluid movements through capillary walls, in: Handbook of Physiology: The Cardiovascular System, Vol. 4 (E. M. Renkin and C. C. Michel, eds.), American Physiological Society, Bethesda, pp. 375–409.Google Scholar
  21. 21.
    Fischbarg, J., Warshavsky, C. R., and Urn, J. J., 1977, Pathways for hydraulically and osmotically induced water flows across epithelium, Nature 266:71–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Luckett, P. M., Fischbarg, J., Bhattacharya, J., and Silverstein, S. C., 1989, Hydraulic conductivity of endothelial cell monolayers cultured on human amnion, Am. J. Physiol. 256:H1675–H1683.Google Scholar
  23. 23.
    Lee, J. S., Smaje, L. H., and Zweifach, B.W., 1971, Fluid movement in occluded single capillaries of rabbit omentum, Circ. Res. 28:358–370.PubMedCrossRefGoogle Scholar
  24. 24.
    Shasby, D. M., and Peterson, W. P., 1987, Effects of albumin concentration on endothelial albumin transport in vitro, Am. J. Physiol. 253:H654–H661.Google Scholar
  25. 25.
    Majno, G., and Palade, G. E., 1961, Studies on inflammation I—The effect of histamine and serotonin on vascular permeability: An electron microscopic study, J. Biophys. Biochem. Cytol. 11:571–605.PubMedCrossRefGoogle Scholar
  26. 26.
    Garcia, J. G. N., Siflinger-Birnboim, A., Bizios, R., DelVecchio, P. J., Fenton, J. W. II, and Malik, A. B., 1986, Thrombin-induced increase in albumin permeability across the endothelium, J. Cell. Physiol. 128: 96–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Dahlen, S. E., Bjork, J., Hedqvist, P., Arfors, K. E., Hammarstrom, S., Lindgren, J. A., and Sammuelson, B., 1981, Leukotrienes promote plasma leakage and leukocyte adhesion in post-capillary venules: In vivo effects with relevance to the acute inflammatory response, Proc. Natl. Acad. Sci. USA 78:3887–3891.PubMedCrossRefGoogle Scholar
  28. 28.
    Humphrey, D. M., McManus, L. M., Satouchi, K., and Hanahan, D. J., 1982, Vasoactive properties of acetyl glycerol ether phosphorylcholine and analogues, Lab. Invest. 46:422–427.PubMedGoogle Scholar
  29. 29.
    Horvath, C. J., Ferro, T. J., Jesmok, G., and Malik, A. B., 1988, Recombinant tumor necrosis factor increases pulmonary vascular permeability independent of neutrophils, Proc. Natl. Acad. Sci. USA 85: 9219–9223.PubMedCrossRefGoogle Scholar
  30. 30.
    Gallin, J. I., Goldstein, I. M., and Snyderman, R. (eds), 1988, Inflammation: Basic Principles and Clinical Correlates, Raven Press, New York, p. 111.Google Scholar
  31. 31.
    Wintrobe, M. M., 1962, Clinical Hematology, Lea & Febiger, Philadelphia, p. 242.Google Scholar
  32. 32.
    Chien, S., Usami, S., and Skalak, R., 1984, Blood flow in small tubes, in: Handbook of Physiology: The Cardiovascular System, Vol. 4 (E. M. Renkin, C. C. Michel, and S. R. Geiger, eds.), American Physiological Society, Bethesda, pp. 237–238.Google Scholar
  33. 33.
    Firrell, J. C., and Lipowsky, H. H., 1989, Leukocyte margination and deformation in mesenteric venules of rat, Am. J. Physiol. 256:H1667–H1674.Google Scholar
  34. 34.
    Marchesi, V. T., and Florey, H. W., 1960, Electron micrographic observations on the emigration of leukocytes, Q. J. Exp. Physiol. 45:343–348.PubMedGoogle Scholar
  35. 35.
    Lackie, J. M., and DeBono, D., 1977, Interactions of neutrophil granulocytes (PMN’s) and endothelium in vitro, Microvasc. Res. 13:107–112.PubMedCrossRefGoogle Scholar
  36. 36.
    Hoover, R. L., Briggs, R. T., and Karnovsky, M. J., 1978, The adhesive interaction between polymorphonuclear leukocytes and endothelial cells in vitro, Cell 14:423–428.PubMedCrossRefGoogle Scholar
  37. 37.
    Zigmond, S. H., 1974, Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes, Nature 249:450–452.PubMedCrossRefGoogle Scholar
  38. 38.
    Wilkinson, P. C. (ed.), 1982, Chemotaxis and Inflammation, Churchill Livingstone, Edinburgh.Google Scholar
  39. 39.
    Zigmond, S. H., and Devreotes, P. N., 1988, Chemotaxis in eukaryotic cells: A focus on leukocytes and Dictyostelium, Annu. Rev. Cell Biol. 4:649–686.CrossRefGoogle Scholar
  40. 40.
    Zigmond, S. H., 1981, Consequences of chemotactic peptide receptor modulation for leukocyte orientation, J. Cell Biol. 88:644–647.PubMedCrossRefGoogle Scholar
  41. 41.
    Snyderman, R., and Pike, M. C., 1984, Chemoattractant receptors on phagocytic cells, Annu. Rev. Immunol. 2:257–281.PubMedCrossRefGoogle Scholar
  42. 42.
    Tranquillo, R. T., Lauffenburger, D. A., and Zigmond, S. H., 1988, A stochastic model for leukocyte random motility and Chemotaxis based on receptor binding fluctuations, J. Cell Biol. 106:303–309.PubMedCrossRefGoogle Scholar
  43. 43.
    Robbins, S. L., Cotran, R. S., and Kumar, V. (eds.), 1984, Pathologic Basis of Disease, Saunders, Philadelphia, p. 48.Google Scholar
  44. 44.
    Harvath, L., and Leonard, E. J., 1982, Two neutrophil populations in human blood with different chemotactic activities: Separation and chemoattractant binding, Infect. Immun. 36:443–449.PubMedGoogle Scholar
  45. 45.
    Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H., 1980, Leukotriene B4, potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature 286:264–265.PubMedCrossRefGoogle Scholar
  46. 46.
    Fernandez, H. N., Henson, P.M., Otani, A., and Hugh, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo conditions, J. Immunol. 120:109–115.PubMedGoogle Scholar
  47. 47.
    Senior, R. M., Skogen, W. F., Griffin, G. L., and Wilner, G. D., 1986, Effects of fibrinogen derivatives upon the inflammatory response, J. Clin. Invest. 77:1014–1019.PubMedCrossRefGoogle Scholar
  48. 48.
    Shaw, J. O., Henson, P.M., Henson, J., and Webster, R. O., 1980, Lung inflammation induced by complement-derived chemotactic fragments in the alveolus, Lab. Invest. 42:547–558.PubMedGoogle Scholar
  49. 49.
    Tonnesen, M. G., Smedley, L. A., and Henson, P. M., 1984, Neutrophil-endothelial cell interactions— Modulation of neutrophil adhesiveness induced by complement fragments C5a, and C5a des arg and fMLP in vitro, J. Clin. Invest. 74:1581–1592.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshimura T., Matsuchima, K., Tanaka, S., Robinson, E. A., Appella, E., Oppenheim, J. J., and Leonard, E. J., 1987, Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines, Proc. Natl. Acad. Sci. USA 84:9233–9237.PubMedCrossRefGoogle Scholar
  51. 51.
    Strieter, R. M., Kunkel, S. L., Showell, H. J., Remick, D. G., Phan, S. H., Ward, P. A., and Marks, R. M., 1989, Endothelial cell gene expression of a neutrophil chemotactic factor by TNF-alpha, LPS, and IL-1 beta, Science 243:1467–1469.PubMedCrossRefGoogle Scholar
  52. 52.
    Strieter, R. M., Phan, S. H., Showell, H. J., Remick, D. G., Lynch, J. P., Genard, M., Raiford, C., Eskandari, M., Marks, R. M., and Kunkel, S. L., 1989, Monokine-induced neutrophil chemotactic factor gene expression in human fibroblasts, J. Biol. Chem. 264:10621–10626.PubMedGoogle Scholar
  53. 53.
    Hopkins, N. K., Schaub, R. G., and Gorman, R. R., 1984, Acetyl glycerol ether phosphorylcholine (pafacether) and leukotriene B4-mediated neutrophil Chemotaxis through an intact endothelial cell monolayer, Biochim. Biophys. Acta 805:30–36.PubMedCrossRefGoogle Scholar
  54. 54.
    Deuel, T. F., Senior, R. M., Huang, J. S., and Griffin, G. L., 1982, Chemotaxis of monocytes and neutrophils to platelet-derived growth factor, J. Clin. Invest. 69:1046–1049.PubMedCrossRefGoogle Scholar
  55. 55.
    Gimbrone, M. A., Obin, M. S., Brock, A. F., Luis, E. A., Hass, P. E., Hebert, C. A., Yip, Y. K., Leung, D. W., Lowe, D. G., Kohr, W. , Darbonne, W. C., Bechtol, K. B., and Baker, J. B., 1989, Endothelial interleukin-8: A novel inhibitor of leukocyte-endothelial interactions, Science 246:1601–1603.PubMedCrossRefGoogle Scholar
  56. 56.
    Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S., and Gimbrone, M. A., Jr., 1985, Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines, J. Clin. Invest. 76:2003–2011.PubMedCrossRefGoogle Scholar
  57. 57.
    Zimmerman, G. A., McIntyre, T. M., and Prescort, S. M., 1985, Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro, J. Clin. Invest. 76:2235–2246.PubMedCrossRefGoogle Scholar
  58. 58.
    Baggiolini, M., Walz, A., and Kunkel, S. L., 1989, Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils, J. Clin. Invest. 84:1045–1049.PubMedCrossRefGoogle Scholar
  59. 59.
    Ross, R., Raines, E. W., and Bowen-Pope, D. F., 1986, The biology of platelet-derived growth factor, Cell 46:155–169.PubMedCrossRefGoogle Scholar
  60. 60.
    Shalaby, M. R., Palladino, M. A., Jr., Hirabayashi, S. E., Eesalu, T. E., Lewis, G. D., Shepard, H. M., and Aggarwal, B. B., 1987, Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha, J. Leukoc. Biol. 41:196–204.PubMedGoogle Scholar
  61. 61.
    Anderson, D. C., and Springer, T. A., 1987, Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1, and pl50,95 glycoproteins, Annu. Rev. Med. 38:175–194.PubMedCrossRefGoogle Scholar
  62. 62.
    Hynes, R. O., 1987, Integrins: A family of cell surface receptors, Cell 48:549–554.PubMedCrossRefGoogle Scholar
  63. 63.
    Arfors, K. E., Lundberg, C., Lindbom, L., Lundberg, K., Beatty, P. G., and Harlan, J. M., 1987, A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo, Blood 69:338–340.PubMedGoogle Scholar
  64. 64.
    Beatty, P. G., Harlan, J. M., Rosen, H., Hansen, J. A., Ochs, H. D., Price, T. H., Taylor, R. F., and Klebanoff, S. J., 1984, Absence of monoclonal-antibody-defined protein complex in boy with abnormal leukocyte function, Lancet 1:535–537.PubMedCrossRefGoogle Scholar
  65. 65.
    Harlan, J. M., Killen, P. D., Senecal, F.M., Schwartz, B. R., Yee, E. K., Taylor, R. F., and Klebanoff, S. J., 1985, The role of neutrophil membrane glycoprotein gp-150 in neutrophil adherence to endothelium in vitro, Blood 66:167–178.PubMedGoogle Scholar
  66. 66.
    Lo, S. K., Detmers, P.A., Levin, S. M., and Wright, S. D., 1989, Transient adhesion of neutrophils to endothelium, J. Exp. Med. 169:1779–1793.PubMedCrossRefGoogle Scholar
  67. 67.
    Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C., and Anderson, D. C., 1989, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83:2008–2017.PubMedCrossRefGoogle Scholar
  68. 68.
    Zimmerman, G. A., and Mclntyre, T. M., 1988, Neutrophil adherence to human endothelium in vitro occurs by CDwl8 (Mol, MAC-1/LFA-l/GP 150,95) glycoprotein-dependent and independent mechanisms, J. Clin. Invest. 81:531–537.PubMedCrossRefGoogle Scholar
  69. 69.
    Tonnesen, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N., and Henson, P. M., 1989, Adherence of neutrophils to cultured human microvascular endothelial cells: Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, FLA-1, pl50,95 glycoprotein family, J. Clin. Invest. 83:637–646.PubMedCrossRefGoogle Scholar
  70. 70.
    Springer, T. A., Thompson, W. S., Miller, L. J., Schmalsteig, F. C., and Anderson, D. C., 1984, Inherited deficiency of the Mac-1, LFA-1, pl50.95 glycoprotein family and its molecular basis, J. Exp. Med. 160:1901–1918.PubMedCrossRefGoogle Scholar
  71. 71.
    Berger, M., O’Shea, J., Cross, A. S., Folks, T. M., Chused, T. M., Brown, E. J., and Frank, M. M., 1984, Human neutrophils increase expression of C3bi as well as C3b receptors upon activation, J. Clin. Invest. 74:1566–1571.PubMedCrossRefGoogle Scholar
  72. 72.
    Gamble, J. R., Harlan, J. M., Klebanoff, S. J., and Vadas, M. A., 1985, Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor, Proc. Natl. Acad. Sci. USA 82:8667–8671.PubMedCrossRefGoogle Scholar
  73. 73.
    Berger, M., Wetzler, E. M., and Wallis, R. S., 1988, Tumor necrosis factor is the major monocyte product that increases complement receptor expression on human neutrophils, Blood 71:151–158.PubMedGoogle Scholar
  74. 74.
    Smith, C. W., Rothlein, R., Hughes, B. J., Mariscalco, M. M., Rudloff, H. E., Schmalsteig, F. C., and Anderson, D. C., 1988, Recognition of an endothelial determinant for CD18-dependent human neutrophil adherence and transendothelial migration, J. Clin. Invest. 82:1746–1756.PubMedCrossRefGoogle Scholar
  75. 75.
    Moser, R., Schleiffenbaum, B., Groscurth, P., and Fehr, J., 1989, Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage, J. Clin. Invest. 83:444–455.PubMedCrossRefGoogle Scholar
  76. 76.
    Detmers, P. A., Olesen-Egbert, E., Lo, S. K., Olsen-Egbert, E., Walz, A., Baggiolini, M., and Cohn, Z. A., 1990, Neutrophil activating protein/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils, J. Exp. Med. 171:1155–1162.PubMedCrossRefGoogle Scholar
  77. 77.
    Lopez, A. F., Williamson, D. J., Gamble, J. R., Begley, C. G., Harlan, J. M., Klebanoff, S. J., Waltersdorph, A., Wong, G., Clark, S. C., and Vadas, M. A., 1986, Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival, J. Clin. Invest. 78:1220–1228.PubMedCrossRefGoogle Scholar
  78. 78.
    Vedder, N. B., and Harlan, J. M., 1988, Increased surface expression of CD11b/CD18(Mac-l) is not required for stimulated neutrophil adherence to cultured endothelium, J. Clin. Invest. 81:676–682.PubMedCrossRefGoogle Scholar
  79. 79.
    Dustin, M. L., and Springer, T. A., 1989, T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature 341:619–624.PubMedCrossRefGoogle Scholar
  80. 80.
    Chatila, T. A., Geha, R. S., and Arnaout, A., 1989, Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules, J. Cell Biol. 109:3435–3444.PubMedCrossRefGoogle Scholar
  81. 81.
    Buyon, J. P., Slade, S. G., Reibman, J., Abramson, S. B., Philips, M. R., Weissman, G., and Winchester, R., 1990, Constitutive and induced phosphorylation of the α- and β-chains of the CD11/CD18 leukocyte integrin family, J. Immunol. 144:191–197.PubMedGoogle Scholar
  82. 82.
    Detmers, P. A., Wright, S. D., Olsen, E., Kimball, B., and Cohn, Z. A., 1987, Aggregation of complement receptors on human neutrophils in the absence of ligand, J. Cell Biol. 105:1137–1145.PubMedCrossRefGoogle Scholar
  83. 83.
    Furie, M. B., and McHugh, D. D., 1989, Migration of neutrophils across endothelial monolayers is stimulated by treatment of the monolayers with interleukin-1 or tumor necrosis factor-α, J. Immunol. 143:3309–3317.PubMedGoogle Scholar
  84. 84.
    Gallin, J. I., Goldstein, I. M., and Snyderman, R. (eds.), 1988, Inflammation: Basic Principles and Clinical Correlates, Raven Press, New York, pp. 204–205.Google Scholar
  85. 85.
    Stern, D. M., Bank, I., Nawroth, P. P., Cassimeris, J., Kisiel, W., Fenton, J. W. II, Dinarello, C., Chess, L., and Jaffe, E. A., 1985, Self-regulation of procoagulant events on the endothelial cell surface, J. Exp. Med. 162:1223–1235.PubMedCrossRefGoogle Scholar
  86. 86.
    Bevilacqua, M. P., Pober, J. S., Majeau, G. R., Cotran, R. S., and Gimbrone, M. A., 1984, Interleukin 1 (II-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells, J. Exp. Med. 160:618–623.PubMedCrossRefGoogle Scholar
  87. 87.
    Gallin, J. I., Goldstein, I. M., and Snyderman, R. (eds.), 1988, Inflammation: Basic Principles and Clinical Correlates, Raven Press, New York, pp. 198–199.Google Scholar
  88. 88.
    Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Derynck, R., Palladino, M. A., Mohr, W. J., Aggarwal, B. B., and Goeddel, D. V., 1984, Human tumor necrosis factor: Precursor structure, expression and homology to lymphotoxin, Nature 312:724–729.PubMedCrossRefGoogle Scholar
  89. 89.
    Beutler, B., Mahoney, J., Le Trang, N., Pekala, P., and Cerami, A., 1985, Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells, J. Exp. Med. 161:984–995.PubMedCrossRefGoogle Scholar
  90. 90.
    Gray, P. W., Aggarwal, B. B., Benton, C. V., Bringman, T. S., Henzel, W. J., Jarrett, J. A., Leung, D. W., Maffatt, B., Ng, P., and Sverdersky, L. P., 1984, Cloning and expressing cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity, Nature 312:721–724.PubMedCrossRefGoogle Scholar
  91. 91.
    Pober, J. S., Gimbrone, M. A., Lapierre, L. A., Mendrick, D. L., Fiers, W., Rothlein, R., and Springer, T. A., 1986, Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon, J. Immunol. 137:1893 – 1896.PubMedGoogle Scholar
  92. 92.
    Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., and Seed, B., 1989, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243:1160–1165.PubMedCrossRefGoogle Scholar
  93. 93.
    Siegelman, M. H., van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243:1165–1172.PubMedCrossRefGoogle Scholar
  94. 94.
    Johnston, G. I., Cook, R. G., and McEver, R. P., 1989, Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56:1033–1044.PubMedCrossRefGoogle Scholar
  95. 95.
    Pober, J. S., Bevilacqua, M. P., Mendrick, D. L., Lapierre, L. A., Fiers, W., and Gimbrone, M. A., 1986, Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells, J. Immunol. 136:1680–1687.PubMedGoogle Scholar
  96. 96.
    Dustin, M. L., and Springer, T. A., 1988, Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol. 107:321–331.PubMedCrossRefGoogle Scholar
  97. 97.
    Berendt, A. R., Simmons, D. L., Tansey, J., Newbold, C. I., and Marsh, K., 1989, Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum, Nature 341:57–59.PubMedCrossRefGoogle Scholar
  98. 98.
    Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A., 1986, Induction by IL 1 and interferon-gamma: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1), J. Immunol. 137:245–254.PubMedGoogle Scholar
  99. 99.
    McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M., 1986, Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils Proc. Natl. Acad. Sci. USA 83:2204–2208.PubMedCrossRefGoogle Scholar
  100. 100.
    DiCorleto, P.E., and Bowen-Pope, D. F., 1983, Cultured endothelial cells produce a platelet-derived growth factor-like protein, Proc. Natl. Acad. Sci. USA 80:1919–1923.PubMedCrossRefGoogle Scholar
  101. 101.
    Camussi, G., Aglietta, M., Malavasi, F., Tetta, C., Piacibello, W., Sanavio, F., and Bussolino, F., 1983, The release of platelet-activating factor from human endothelial cells in culture, J. Immunol. 131:2397–2403.PubMedGoogle Scholar
  102. 102.
    Wedmore, C., and Williams, T. J., 1981, Control of vascular permeability by polymorphonuclear leukocytes in inflammation, Nature 289:646–650.PubMedCrossRefGoogle Scholar
  103. 103.
    Heflin, A. C., Jr., and Brigham, K. L., 1981, Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia, J. Clin. Invest. 68:1253–1260.PubMedCrossRefGoogle Scholar
  104. 104.
    Shaw, J. O., and Henson, P.M., 1982, Pulmonary intravascular sequestration of activated neutrophils— Failure to induce light microscopic evidence of lung injury in rabbits, Am. J. Pathol. 108:17–23.PubMedGoogle Scholar
  105. 105.
    Meyrick, B., Hoffman, L. H., and Brigham, K. L., 1984, Chemotaxis of granulocytes across bovine pulmonary artery intimai explants without endothelial cell injury, Tissue Cell 16:1–16.PubMedCrossRefGoogle Scholar
  106. 106.
    Webster, R. O., Larsen, G. L., Mitchell, B. C., Goins, A. J., and Henson, P. M., 1982, Absence of inflammatory lung injury in rabbits challenged intravascularly with complement-derived chemotactic factors, Am. Rev. Respir. Dis. 125:335–340.PubMedGoogle Scholar
  107. 107.
    Martin, T. R., Pistorese, B. P., and Chi, E. Y., Goodman, R. B., and Matthay, M. A., 1989, Effects of leukotriene B4 in the human lung: Recruitment of neutrophils into the alveolar spaces without a change in protein permeability, J. Clin. Invest. 84:1609–1619.PubMedCrossRefGoogle Scholar
  108. 108.
    Harlan, J. M., Schwartz, B. R., Reidy, M. A., Schwartz, S. M., Ochs, H. D., and Harker, L. A., 1985, Activated neutrophils disrupt endothelial monolayer integrity by an oxygen radical-independent mechanism, Lab. Invest. 52:141–150.PubMedGoogle Scholar
  109. 109.
    Killackey, J. J., Johnston, M. G., and Movat, H. Z., 1986, Increased permeability of microcarrier-cultured endothelial monolayers in response to histamine and thrombin: A model for the in vitro study of increased vasopermeability, Am. J. Pathol. 122:50–61.PubMedGoogle Scholar
  110. 110.
    Brett, J., Gerlach, H., Nawroth, P., Steinberg, S., Godman, G., and Stern, D., 1989, Tumor necrosis factor/ cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins, J. Exp. Med. 169:1977–1991.PubMedCrossRefGoogle Scholar
  111. 111.
    Langeler, E. G., Snelting, Havinga, I., and Van Hinsbergh, V. W. M., 1989, Passage of low density lipoproteins through monolayers of human arterial endothelial cells: Effects of vasoactive substances in an in vitro model, Arteriosclerosis 9:550–559.PubMedCrossRefGoogle Scholar
  112. 112.
    Fromter, E., 1972, The rout of passive ion movement through the epithelium of Necturus gallbladder, J. Membr. Biol. 8:259–301.PubMedCrossRefGoogle Scholar
  113. 113.
    Vasile, E., Simionescu, M., and Simionescu, N., 1983, Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ, J. Cell Biol. 96:1677–1689.PubMedCrossRefGoogle Scholar
  114. 114.
    Ghitescu, L., Fixman, A., Simionescu, M., and Simionescu, N., 1986, Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: Receptor-mediated transcytosis, J. Cell Biol. 102:1304–1311.PubMedCrossRefGoogle Scholar
  115. 115.
    Schnitzer, J. E., Carley, W. W., and Palade, G. E., 1988, Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein, Proc. Natl. Acad. Sci. USA 85:6773–6777.PubMedCrossRefGoogle Scholar
  116. 116.
    Navab, M., Hough, G. P., Stevenson, L. W., Drinkwater, D. C., Laks, H., and Fogelman, A. M., 1988, Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells, J. Clin. Invest. 82:1853–1863.PubMedCrossRefGoogle Scholar
  117. 117.
    Madri, J. A., and William, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.PubMedCrossRefGoogle Scholar
  118. 118.
    Rotrosen, D., and Gallin, J. I., 1986, Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers, J. Cell Biol. 103:2379–2387.PubMedCrossRefGoogle Scholar
  119. 119.
    Doukas, J., Shepro, D., and Hechtman, H. B., 1987, Vasoactive amines directly modify endothelial cells to affect polymorphonuclear leukocyte diapedesis in vitro, Blood 69:1563–1569.PubMedGoogle Scholar
  120. 120.
    Bottaro, D., Shepro, D., Peterson, S., and Hechtman, H. B., 1986, Serotonin, norepinephrine, and histamine mediation of endothelial cell barrier function in vitro, J. Cell. Physiol. 128:189–194.PubMedCrossRefGoogle Scholar
  121. 121.
    Baron, D. A., Lofton, C. E., Newman, W. H., et al., 1989, Atriopeptin inhibition of thrombin-mediated changes in the morphology and permeability of endothelial monolayers, Proc. Natl. Acad. Sci. USA 86:3394–3398.PubMedCrossRefGoogle Scholar
  122. 122.
    Huang, A. J., Unpublished observations.Google Scholar
  123. 123.
    Noonan, T. C., Selig, W. M., Kern, D. F., and Malik, A. B., 1986, Mechanism of peptidoleukotriene-induced increases in pulmonary transvascular fluid filtration, J. Appl. Physiol. 61:1928–1934.PubMedGoogle Scholar
  124. 124.
    Bussolino, F., Camussi, G., Aglietta, M., Braquet, P., Bosia, A., Pescarmona, G., Sanavio, F., D’Urso, N., and Marchisia, P. C., 1987, Human endothelial cells are target for platelet-activating factor, J. Immunol. 139:2439–2446.PubMedGoogle Scholar
  125. 125.
    Stoll, L., and Spector, A. A., 1989, Interaction of platelet-activating factor with endothelial and vascular smooth muscle cells in coculture, J. Cell. Physiol. 139:253–261.PubMedCrossRefGoogle Scholar
  126. 126.
    Garcia, J. G., Azghani, A., Callahan, K. S., and Johnson, A. R., 1988, Effect of platelet activating factor on leukocyte-endothelial cell interactions, Thromb. Res. 51:83–96.PubMedCrossRefGoogle Scholar
  127. 127.
    Burhop, K. E., Garcia, J. G., Selig, W. M., Lo, S. K., Van der zee, H., Kaplan, J. E., and Malik, A. B., 1986, Platelet-activating factor increases lung vascular permeability to protein, J. Appl. Physiol. 61:2210–2217.PubMedGoogle Scholar
  128. 128.
    Palmer, R. M., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327:524–526.PubMedCrossRefGoogle Scholar
  129. 129.
    Miller, V. M., and Vanhoutte, P. M., 1985, Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase, Am. J. Physiol. 248:H432–H437.Google Scholar
  130. 130.
    Shasby, D. M., Shasby, S. S., and Peach, M. J., 1985, Polymorphonuclear leukocyte: Arachidonate edema, J. Appl. Physiol. 59:47–55.PubMedGoogle Scholar
  131. 131.
    Evans, C. W., Taylor, J. E., Walker, J. D., and Simmons, N. L., 1983, Transepithelial Chemotaxis of rat peritoneal exudate cells, Br. J. Exp. Pathol. 64:644–654.PubMedGoogle Scholar
  132. 132.
    Nash, S., Stafford, J., and Madara, J. L., 1987, Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers, J. Clin. Invest. 80:1104–1113.PubMedCrossRefGoogle Scholar
  133. 133.
    Milks, L., and Cramer, E., 1984, Transepithelial electrical resistance studies during in vitro neutrophil (PMN) migration, Fed. Proc. Abstr. 43(3):777.Google Scholar
  134. 134.
    Robbins, S. L., Cotran, R. S., and Kumar, V. (eds.), Pathologic Basis of Disease, Saunders, Philadelphia, p. 51.Google Scholar
  135. 135.
    Lewis, M. S., Whatley, R. E., Cain, P., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A., 1988, Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelial cell-dependent neutrophil adhesion, J. Clin. Invest. 82:2045–2055.PubMedCrossRefGoogle Scholar
  136. 136.
    Ager, A., and Gordon, J. L., 1984, Differential effects of hydrogen peroxide on indices of endothelial cell function, J. Exp. Med. 159:592–603.PubMedCrossRefGoogle Scholar
  137. 137.
    Weitz, J. I., Huang, A. J., Landman, S. L., Nicholson, S. C., and Silverstein, S. C., 1987, Elastase-mediated fibrinogenolysis by chemoattractant-stimulated neutrophils occurs in the presence of physiologic concentrations of antiproteinases, J. Exp. Med. 166:1836–1850.PubMedCrossRefGoogle Scholar
  138. 138.
    Lo, S. K., Ryan, T. J., Gilboa, N., Lai, L., and Malik, A.B., 1989, Role of catalytic and lysine-binding sites in plasmin-induced neutrophil adherence to endothelium, J. Clin. Invest. 84:793–801.PubMedCrossRefGoogle Scholar
  139. 139.
    Griepp, E. B., Dolan, W. J., Robbins, E. S., and Sabatini, D. D., 1983, Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells, J. Cell Biol. 96:693–702.PubMedCrossRefGoogle Scholar
  140. 140.
    Peterson, M. W., Stone, P., and Shasby, D. M., 1987, Cationic neutrophil proteins increase transendothelial albumin movement, J. Appi. Physiol. 62:1521–1530.CrossRefGoogle Scholar
  141. 141.
    Majno, G., Shea, S. M., and Leventhal, M., 1969, Endothelial contraction induced by histamine type mediators, J. Cell Biol. 42:617–672.CrossRefGoogle Scholar
  142. 142.
    Huang, A. J., Nicholson, S. C., and Silverstein, S. C., 1989, Neutrophil migration across monolayers of human endothelial cells induces changes in endothelial cell cytosolic free calcium, J. Cell Biol. 109:313a.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ada J. Huang
    • 1
  • Samuel C. Silverstein
    • 2
  1. 1.Department of Medicine, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of Physiology and Cellular Biophysics, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations