Advertisement

Recent Insights into the Mechanisms of Vascular Injury

Implications for the Pathogenesis of Vasculitis
  • Ramzi S. Cotran
  • Jordan S. Pober

Abstract

Vascular injury and inflammation are the most important features of a heterogeneous group of disorders commonly referred to as the systemic necrotizing vasculitides.1 Previous studies have established two pathogenetic mechanisms for vasculitis2,3: deposition of circulating immune complexes with subsequent complement activation and inflammation; and interactions between circulating antibodies with blood vessel wall antigens in situ, such as occurs in Goodpasture’s syndrome, in which autoantibodies interact with glomerular and pulmonary capillary basement membranes. These mechanisms, however, cannot account for many forms of inflammatory vasculitis and several additional or alternative pathways have recently been explored. In this chapter we will review three settings of vascular injury which may shed light on the pathogenesis of vasculitis. First, we will examine the role of cytokine-induced activation4 of endothelial cells in causing endothelial and vascular injury and the possible role of these effects in one form of vasculitis—Kawasaki’s disease; second, we will describe the details of vascular injury occurring during transplantation reactions, and how these may be relevant to other forms of vasculitis; and third, we will review recent work associating the presence of antineutrophil cytoplasmic antibodies with certain forms of vasculitis, such as Wegener’s granulomatosis.

Keywords

Kawasaki Disease Heparan Sulfate Vascular Injury Antineutrophil Cytoplasmic Antibody Hyperacute Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cupps, T. R., and Fauci, A. S., 1981, The Vasculitides, Saunders, Philadelphia.Google Scholar
  2. 2.
    Savage, C. O. S., and Ng, Y. C., 1986, The etiology and pathogenesis of major systemic vasculitis, Postgrad. Med. J. 62:623.CrossRefGoogle Scholar
  3. 3.
    Wilson, C.B., 1990, The renal response to immunological injury, in: The Kidney, 4th ed. (B. M. Brenner and R. C. Rector, eds.), Saunders, Philadelphia.Google Scholar
  4. 4.
    Pober, J. S., and Cotran, R. S., 1990, Cytokines and endothelial cell biology, Physiol. Rev. 70:427.PubMedGoogle Scholar
  5. 5.
    Pober, J. S., Gimbrone, M. A., Jr., Cotran, R. S., Reiss, C. S., Burakoff, S. J., Fiers, W., and Ault, K. A., 1983, Ia expression by vascular endothelium is inducible by activated T-cells and by human γ interferon, J. Exp. Med. 157:1339.PubMedCrossRefGoogle Scholar
  6. 6.
    Cotran, R. S., and Pober, J. S., 1990, Cytokine-endothelial interactions in inflammation, immunity and vascular injury, J. Am. Soc. Nephrol. 1:225–235.PubMedGoogle Scholar
  7. 7.
    Osborn, J., 1990, Leukocyte adhesion to endothelium in inflammation, Cell 62:3.PubMedCrossRefGoogle Scholar
  8. 8.
    Thornhill, M. H., Kyan-Aung, U., and Haskard, D. O., 1990, IL-4 increases human endothelial cell adhesiveness for T-cells but not for neutrophils, J. Immunol. 144:3060.PubMedGoogle Scholar
  9. 9.
    Stolpen, A. H., Guinan, E. C., Fiers, W., and Pober, J. S., 1986, Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers, Am. J. Pathol. 123:16.PubMedGoogle Scholar
  10. 10.
    Brett, J., Gerlack, H., Nawroth, P., Steinberg, S., Godman, G., and Stern, D., 1989, Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G-proteins, J. Exp. Med. 169:1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Ward, P. A., and Varani, J., 1990, Mechanisms of neutrophil-mediated killing of endothelial cells, J. Leukocyte Biol. 48:97.PubMedGoogle Scholar
  12. 12.
    Cotran, R. S., 1990, Pathogenesis of vasculitis: An update, in: Advances in Pathology, Vol. III, pp. 301–310.Google Scholar
  13. 13.
    Brasile, L., Kremer, J. M., Clarke, J. L., and Cerilli, J., 1989, Identification of an autoantibody to vascular endothelial cell-specific antigens in systemic vasculitis, Am. J. Med. 87:74.PubMedCrossRefGoogle Scholar
  14. 14.
    Leung, D. Y. M., Geha, R. S., Newburger, J. W., Burns, J. C., Fiers, W., Lapierre, L. A., and Pober, J. S., 1986, Two monokines, interleukin a and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome, J. Exp. Med. 164:1958.PubMedCrossRefGoogle Scholar
  15. 15.
    Leung, D. Y. M., Collins, T., Lapierre, L. A., Geha, R. S., and Pober, J. S., 1986, Immunoglobulin M antibodies present in the acute phase of Kawasaki syndrome lyse cultured vascular endothelial cells stimulated by γ-interferon, J. Clin. Invest. 77:1428.PubMedCrossRefGoogle Scholar
  16. 16.
    Maury, C. P. J., Salo, E., and Pelkonen, P., 1988, Circulating interleukin-1 in patients with Kawasaki disease, N. Engl. J. Med. 319:1670.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurukawa, S., Matsubara, T., Jujoh, K., Yone, K., Sugawara, T., Sasai, K., Kato, H., and Yabuta, K., 1988, Peripheral blood monocyte/macrophage and serum tumor necrosis factor in Kawasaki disease, Clin. Immunol. Immunopathol. 48:247.CrossRefGoogle Scholar
  18. 18.
    Rowley, A. H., Shulman, S. T., Preble, O. T., Poiesz, B. J., Ehrlich, G. D., and Sullivan, J. R., 1988, Serum interferon concentrations and retroviral serology in Kawasaki syndrome, Pediatr. Inf. Dis. J. 7:663.CrossRefGoogle Scholar
  19. 19.
    Leung, D. Y. M., Cotran, R. S., Kurt-Jones, E. A., Burns, J. C., Newburger, J. W., and Pober, J. S., 1989, Endothelial activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease, Lancet 2:1298.PubMedCrossRefGoogle Scholar
  20. 20.
    Esmon, C., 1987, The regulation of natural anticoagulant pathways, Science 235:1348.PubMedCrossRefGoogle Scholar
  21. 21.
    Platt, J. L., Vercellotti, G. M., Lindman, B. J., Oegema, T. R. Jr., Bach, F. H., and Dalmasso, A. P., 1990, Release of heparan sulfate from endothelial cells: Implications for pathogenesis of hyperacute rejection, J. Exp. Med. 171;1363.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamilton, K. K., Hattori, R., Esmon, C. T., and Sims, P. J., 1990, Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrom-binase enzyme complex, J. Biol. Chem. 265:3809.PubMedGoogle Scholar
  23. 23.
    Hattori, R., Hamilton, K. K., McEver, R. P., and Sims, P. J., 1989, Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to one cell surface, J. Biol. Chem. 264:9053.PubMedGoogle Scholar
  24. 24.
    Cerilli, J., and Brasile, L., 1988, Endothelial cell alloantigens, Transplant. Proc. 12:37.Google Scholar
  25. 25.
    Yowell, R. L., Hammond, E. H., Brislow, M., Watson, F. S., Renlund, D. G., and O’Connell, J. B., 1988, Acute vascular rejection involving the major coronary arteries of cardiac allograft, Heart Transplant. 7:191.Google Scholar
  26. 26.
    Feogh, M. L., 1990, Chronic rejection-graft arteriosclerosis, Transplant. Proc. 22:119.Google Scholar
  27. 27.
    Salomon, R. N., Hughes, C. C. W., Schoen, F. J., Payne, D. D., Pober, J. S., Libby, P., 1991, Human coronary transplantation-associated arteriosclerosis: Evidence for a chronic immune reaction to activated graft endothelial cells, Am. J. Path. 138:791–798.PubMedGoogle Scholar
  28. 28.
    Libby, P., Salomon, R. N., Payne, D. D., Schoen, F. J., and Pober, J. S., 1989, Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis, Transplant. Proc. 21:3677.PubMedGoogle Scholar
  29. 29.
    Grattan, M. T., Moreno-Cabral, C. E., Starnes, V. A., Oyer, P. E., Stinson, E. B., and Shumway, N. E., 1989, Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis, J. Am. Med. Assoc. 261:3651.CrossRefGoogle Scholar
  30. 30.
    Nölle, B., Specks, U., Ludemann, J., Rohrbach, M. S., DeRemee, R. A., and Gross, W. L., 1989, Anticytoplasmic autoantibodies: Their immunodiagnostic value in Wegener’s granulomatosis, Ann. Intern. Med. 111:28.PubMedCrossRefGoogle Scholar
  31. 31.
    Feinberg, R., 1989, Morphologic and immunohistologic study of the evolution of necrotizing palisading granuloma of pathergic granulomatosis, Semin. Respir. Med. 10:126.CrossRefGoogle Scholar
  32. 32.
    Falk, R. J., and Jennette, J. C., 1988, Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis, N. Engl. J. Med. 318:1651.PubMedCrossRefGoogle Scholar
  33. 33.
    Jennette, J. C., Wilkman, A. S., and Falk, R. J., 1989, Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis, Am. J. Pathol. 135:921.PubMedGoogle Scholar
  34. 34.
    Goldschmeding, R., van der Schoot, C. E., Ten Bokkel Huinick, D., Hack, C. E., Van den Ende, M. E., Kallenberg, C. G., and Von dem Borne, A. E., 1989, Wegener’s granulomatosis autoantibodies identify a novel DFP-binding protein in the lysosomes of normal human neutrophils, J. Clin. Invest. 84:1577.PubMedCrossRefGoogle Scholar
  35. 35.
    Niles, J. L., McCluskey, R. T., Ahmad, M. F., and Arnaout, M. A., 1989, Wegener’s granulomatosis autoantigen is a novel neutrophil serine protease, Blood 74:1988.Google Scholar
  36. 36.
    Ludemann, B. U., Utecht, B., and Gross, W. L., 1990, Antineutrophil cytoplasmic antibodies in Wegener’s granulomatosis recognize an elastic enzyme, J. Exp. Med. 171:357.PubMedCrossRefGoogle Scholar
  37. 37.
    Kao, R. C., Wehner, N. G., Skubitz, K. M., Gray, B. H., and Hoidal, J. R., 1988, Proteinase 3: A distinct polymorphonuclear leukocyte proteinase that produces emphysema in hamsters, J. Clin. Invest. 82:1963.PubMedCrossRefGoogle Scholar
  38. 38.
    Falk, R. J., Terrell, R. S., Charles, L. A., and Jennette, J. C., 1990, Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro, Proc. Natl. Acad. Sci. USA 87:4115.PubMedCrossRefGoogle Scholar
  39. 39.
    Jenne Tshopp, J., Ludemann, J., Uthatb, and Gross, W. L., 1990, Wegener’s autoantigen decoded, Nature 346:520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ramzi S. Cotran
    • 1
  • Jordan S. Pober
    • 1
  1. 1.Department of Pathology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations