Visual Form pp 537-546 | Cite as

Shape Splitting from Medial Lines Using the 3–4 Chamfer Distance

  • Edouard Thiel
  • Annick Montanvert


Image analysis and shape description usually require to split the extracted objects into simpler components. This is mainly the case in the application field of cytology or material studies where some aggregations need to be separated into cells or seeds (see Fig. 1).


Medial Axis Shape Description Sequential Algorithm Maximum Relative Error Connection Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Serra, “Image Analysis and Mathematical Morphology”, Academic Press, London (1989).Google Scholar
  2. 2.
    A. Montanvert and D. Adelh, Tools for shape complexity evaluation and associated decomposition processes, 5th ICIAP, September 1989, Positano (Italy), Published in Progress in Image Analysis and Processing: 348-355 (1990).Google Scholar
  3. 3.
    A. Rosenfeld and J.L. Pfaltz, Distance functions on digital pictures, Pattern Recognition 1: 33–61 (1968).MathSciNetCrossRefGoogle Scholar
  4. 4.
    P.E. Danielsson, Euclidean distance mapping, CGIP 14: 227–248 (1980).Google Scholar
  5. 5.
    I. Ragnemalm, The Euclidean distance transform and its implementation on SIMD architectures, 6th Scand.Conf.on Image Anal, Oulu (Finland): 379-384 (1989).Google Scholar
  6. 6.
    G. Borgefors, Distance transformations in digital images, CVGIP 34: 344–371 (1986).Google Scholar
  7. 7.
    A. Rosenfeld and A.C. Kak, “Digital image processing”, Academic Press, New-York (1982).Google Scholar
  8. 8.
    C. Arcelli and G. Sanniti di Baja, Weighted distance transforms: a characterization, in proc. of 4th Int. Conf. on IAPR, Cefalu (Italy): 205-212 (1987).Google Scholar
  9. 9.
    C. Arcelli and G. Sanniti di Baja, Finding local maxima in a pseudo-euclidean distance transform, CVGIP 43: 361–367 (1989).Google Scholar
  10. 10.
    C. Arcelli and G. Sanniti di Baja, A width-independent fast thinning algorithm, I.E.E.E. trans. on PAMI 7(4): 463–474 (1985).CrossRefGoogle Scholar
  11. 11.
    C. Arcelli and G. Sanniti di Baja, A one-pass two-operation process to detect the skeletal pixels on the 4-distance transform, IEEE trans. on PAMI 11(4): 411–414 (1989).CrossRefGoogle Scholar
  12. 12.
    A. Montanvert, Median line: graph representation and shape description, in proc. of 8th ICPR. Paris: 430-432 (1986).Google Scholar
  13. 13.
    F. Meyer, Skeletons and perceptual graphs, Signal Processing 16: 335–363 (1989).MathSciNetCrossRefGoogle Scholar
  14. 14.
    F.Y. Shih and C.C. Pu, Medial axis transformation with single-pixel and connectivity preservation using euclidean distance computation, in proc. of 10th ICPR, Atlantic City: 723-725 (1990).Google Scholar
  15. 15.
    C. Arcelli and G. Sanniti di Baja, An approach to figure decomposition using width information, CVG1P 26: 61–72 (1984).Google Scholar
  16. 16.
    A. Montanvert, Graph environment from medial axis for shape manipulation, in proc. of 4th Int. Conf. on IAPR, Cefalu(Italy): 197-204 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Edouard Thiel
    • 1
  • Annick Montanvert
    • 1
  1. 1.Laboratoire TIM3, IMAG, Equipe RGMQ, USR B 00690CERMOGrenoble CedexFrance

Personalised recommendations