Skip to main content
Book cover

Visual Form pp 231–248Cite as

Qualitative Shape—Some Computational Aspects

  • Chapter
  • 110 Accesses

Abstract

Theories and methodologies for representing and abstracting shape from visual information are a major concern in computational vision. Important contributions have been made on e.g. theories of dynamic shape, on the detection of salient structures like symmetries and discontinuities and also on the use of mathematical techniques of optimization and approximation.

Here we will survey some of these approaches and discuss what they make explicit and how that can be computed. In particular, we will consider such techniques in view of the figure-ground problem and the desirability of qualitative vs. quantitative descriptions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babaud J., Witkin A.P., Baudin M., Duda R.O. (1986) “Uniqueness of the Gaussian Kernel for Scale-Space Filtering”, IEEE Trans, on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 1, pp 26–33.

    Article  Google Scholar 

  2. Bengtson A., Eklundh J.O., Howako J. (1986) “Shape Representation by Multi-Scale Contour Representation”, Technical Report TRITA-NA-8607, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm.

    Google Scholar 

  3. Bengtson A., Eklundh J.O. (1991) “Shape Representation by Multi-Scale Contour Approximation”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No. 1, pp 85–93.

    Article  Google Scholar 

  4. Bergholm F. (1987) “Edge Focusing”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 6, pp 726–741.

    Article  Google Scholar 

  5. Biederman L, “Matching Image Edges to Object Memory”, Proc. 1st Int. Conf. on Computer Vision, London, England, June 8–11, pp384-392.

    Google Scholar 

  6. Dahlquist G. (1989) Personal communication.

    Google Scholar 

  7. Dickinson S.J., Pentland A.P., Rosenfeld A. (1990) “Qualitative 3-D Shape Reconstruction using Distributed Aspect Graph Matching”, Proc. 3rd Int. Conf. on Computer Vision, Osaka, Japan, December 4–7, pp257-262.

    Google Scholar 

  8. Gårding J. (1990) “Shape from Texture and Contour by Weak Isotropy”, Proc. 10th Int. Conf. on Pattern Recognition, pp324-330.

    Google Scholar 

  9. Gårding J. (1991) Shape from Surface Markings, Ph.D. Thesis, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm.

    Google Scholar 

  10. Hoffman D.D., Richards W.A. (1984), “Parts of Recognition”, Cognition, No. 18, pp65-96.

    Google Scholar 

  11. Koenderink J.J., van Doom A.J. (1984) “The Structure of Images”, Biological Cybernetics, Vol. 50, pp 363–370.

    Article  MathSciNet  MATH  Google Scholar 

  12. Koenderink J.J., van Doom A.J. (1986) “Dynamic Shape”, Biological Cybernetics, Vol. 53, pp 383–396.

    Article  MathSciNet  MATH  Google Scholar 

  13. Levine M.D., Bergevin R., Quang L. (1991) “Shape Description Using Geons as 3-D Primitives”, These proceedings.

    Google Scholar 

  14. Lindeberg T.P. (1990) “Scale-Space for Discrete Signals”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-12, No. 3, pp 234–254.

    Article  Google Scholar 

  15. Lindeberg T.P., Eklundh J.O. (1990) “Scale Detection and Region Extraction from a Scale-Space Primal Sketch”, Proc. 3:rd Int. Conf. on Computer Vision, Osaka, Japan, December 4–7, pp416-426.

    Google Scholar 

  16. Lindeberg T.P., Weiss R. (1990) “Some Thoughts about Curves Surfaces and Singularity Theory”, Technical Note CVAP-TN03, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm.

    Google Scholar 

  17. Lindeberg T.P. (1991) Discrete Scale-Space Theory and the Scale-Space Primal Sketch, Ph.D. Thesis, Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm.

    Google Scholar 

  18. Lindeberg T.P., Eklundh J.O. (1991) “On the Computation of a Scale-Space Primal Sketch”, Journal of Visual Communication and Image Representation, Vol. 2, No. 1, pp 55–78.

    Article  Google Scholar 

  19. Lindeberg T.P., Eklundh J.O. (1991) “The Scale-Space Primal Sketch: Construction and Experiments”, To appear in Image and Vision Computing.

    Google Scholar 

  20. Lowe D.G. (1985) Perceptual Organization and Visual Recognition, Kluwer Academic Publishers, Boston.

    Book  Google Scholar 

  21. Lowe D.G. (1988) “Organization of Smooth Image Curves at Multiple Scales”, Proc. 2:nd Int. Conf. on Computer Vision, Florida, USA, December 5–8, pp558-567.

    Google Scholar 

  22. Malik J. (1987), “Interpreting Line Drawings of Curved Objects”, Int. Journal of Computer Vision, No. 1, pp73-103.

    Google Scholar 

  23. Nevatia R., Binford T.O (1977), “Description and Recognition of Curved Objects”, Artificial Intelligence, No. 8, pp77-98.

    Google Scholar 

  24. Sumanaweera T.S., et al (1988) “Image Segmentation Using Geometrical and Physical Constraints”, Proc. Image Understanding Workshop, pp 1091-1099.

    Google Scholar 

  25. Witkin A.P. (1983) “Scale-Space Filtering”, Proc. 8:th Int. Joint Conf. on Artificial Intelligence, Karlsruhe, West Germany, August 8–12, pp 1019-1022.

    Google Scholar 

  26. Yuille A., Poggio T. (1986) “Scaling Theorems for Zero-Crossings”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 1, pp 15–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eklundh, JO., Lindeberg, T., Winroth, H. (1992). Qualitative Shape—Some Computational Aspects. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0715-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0715-8_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0717-2

  • Online ISBN: 978-1-4899-0715-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics