Advertisement

Inorganic and Organometallic Photoinitiators

  • D. Billy Yang
  • Charles Kutal
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Photoinitiated polymerization and cross-linking reactions form the basis of numerous applications in the coatings, reprographic, and microelectronics industries.1–5 Nearly all of the commercially significant photoinitiators are organic compounds that generate free radicals and/or strong acids upon exposure to light.5–8 Common examples include benzoin and its derivatives, benzil ketals, acetophenone derivatives, aromatic ketone/amine combinations, and onium salts belonging to the diaryliodonium, triarylsulfonium, and triarylseleonium families. Despite a substantial number of studies exploring the potential of inorganic and organometallic coordination complexes as photoinitiators, these systems have yet to gain widespread acceptance. Several factors contributing to this dominance of the photoinitiator market by organic compounds can be cited: (1) no compelling case had been made that inorganic and organometallic complexes that generate free radicals offer significant advantages over the traditional organic free radical sources, (2) the facile production of strong Brønsted or Lewis acids via the photodecomposition of onium salts had no counterpart among inorganic and organometallic complexes, and (3) electronic structure-reactivity relationships and other fundamental concepts needed to understand the primary photochemical processes in photoinitiator systems were more advanced for organic compounds.

Keywords

Methyl Methacrylate Faraday Trans Vinyl Monomer Cationic Polymerization Organometallic Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Roffey, Photopolymerizaiion of Coatings, Wiley, New York (1982).Google Scholar
  2. 2.
    Introduction to Microlithography (L. F. Thompson, C. G. Willson, and M. J. Bowden, eds.), Symposium Series, No. 219, Am. Chem. Soc, Washington, D. C. (1983).Google Scholar
  3. 3.
    Polymers in Electronics (T. Davidson, ed.), Symposium Series, No. 242, Am. Chem. Soc, Washington, D. C. (1984).Google Scholar
  4. 4.
    Materials for Microlithography (L. F. Thompson, C. G. Willson, and J. M. J. Frechet, eds.), Symposium Series, No. 266, Am. Chem. Soc, Washington, D. C. (1984).Google Scholar
  5. 5.
    UV Curing: Science and Technology (S. P. Pappas, ed.), Vol. 2, Technology Marketing Corp., Norwalk, Conn. (1985).Google Scholar
  6. 6.
    A. Gandini and H. Cheradame, Cationic Polymerization, Adv. Polym. Sci. 34/35, Springer-Verlag, Berlin (1980).Google Scholar
  7. 7.
    J. F. Rabek, Mechanisms of Photophysical Processes and Photochemical Reactions in Polymers, Wiley, New York (1987).Google Scholar
  8. 8.
    Photopolymerization and Photoimaging Science and Technology (N. S. Allen, ed.), Elsevier Applied Science, Amsterdam (1989).Google Scholar
  9. 9.
    C. H. Bamford, Pure Appl. Chem. 34, 173 (1973).Google Scholar
  10. 10.
    S. M. Aliwi, C. H. Bamford, and S. U. Mullik, J. Polym. Sci. Polym. Symp. 50, 33 (1975).Google Scholar
  11. 11.
    C. H. Bamford, Polymer 17, 321 (1976).Google Scholar
  12. 12.
    D. M. Allen, J. Photograph. Sci. 24, 61 (1976).Google Scholar
  13. 13.
    H. Curtis, E. Irving, and B. F. G. Johnson, Chem. Br. 22, 327 (1986).Google Scholar
  14. 14.
    B. Klingert, M. Riediker, and A. Roloff, Comments Inorg. Chem. 7, 109 (1988).Google Scholar
  15. 15.
    F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions, Wiley, New York (1967).Google Scholar
  16. 16.
    D. F. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry, p. 498, Freeman, San Francisco (1990).Google Scholar
  17. 17.
    J. E. Huheey, Inorganic Chemistry, 3rd ed., p. 589, Harper & Row, New York (1983).Google Scholar
  18. 18.
    W. L. Jolly, Modern Inorganic Chemistry, p. 375, McGraw-Hill, New York (1984).Google Scholar
  19. 19.
    S. A. MacDonald, H. Ito, and C. G. Willson, Microelectron. Eng. 1, 269 (1983).Google Scholar
  20. 20.
    S. P. Pappas, in: Photopolymerization and Photoimaging Science and Technology (N. S. Allen, ed.), p. 55, Elsevier Applied Science, Amsterdam (1989).Google Scholar
  21. 21.
    J. F. Endicott, in: Concepts of Inorganic Photochemistry (A. W. Adamson and P. D. Fleischauer, eds.), p. 81, Wiley-Interscience, New York (1975).Google Scholar
  22. 22.
    N. J. Turro, Modern Molecular Photochemistry, p. 296, Benjamin-Cummings, Menlo Park, Calif. (1978).Google Scholar
  23. 23.
    D. F. Eaton, Adv. Photochem. 13, 427 (1986).Google Scholar
  24. 24.
    V. Balzani and V. Carassiti, Photochemistry of Coordination Compounds, p. 51, Academic Press, New York (1970).Google Scholar
  25. 25.
    C. Kutal and A. W. Adamson, in: Comprehensive Coordination Chemistry (G. Wilkinson, R. D. Gillard, and J. A. McCleverty, eds.), Vol. 1, p. 385, Pergamon Press, Elmsford, N.Y. (1987).Google Scholar
  26. 26.
    R. A. Levenson and H. B. Gray, J. Am. Chem. Soc. 97, 6042 (1975).Google Scholar
  27. 27.
    G. L. Geoffroy and M. S. Wrighton, Organometallic Photochemistry, p. 34, Academic Press, New York (1979).Google Scholar
  28. 28.
    F. Gamier, P. Krausz, and H. Rudler, J. Organomet. Chem. 186, 11 (1980).Google Scholar
  29. 29.
    D. A. Brown, D. Cunningham, and W. K. Glass, J. Chem. Soc. Chem. Commun. 306 (1966).Google Scholar
  30. 30.
    W. Jetz and W. A. G, Graham, Inorg. Chem. 10, 4 (1971).Google Scholar
  31. 31.
    M. L. H. Green and A. N. Stear, J. Organomet. Chem. 1, 230 (1964).Google Scholar
  32. 32.
    K. Yasufuku, H. Noda, J.-I. Iwai, H. Ohtani, M. Hoshino, and T. Kobayashi, Organo-metallics 4, 2174 (1985).Google Scholar
  33. 33.
    T. Kobayashi, H. Ohtani, H. Noda, S. Teratani, H. Yamazaki, and K. Yasufuku, Organo-metallics 5, 110(1986).Google Scholar
  34. 34.
    A. E. Stiegman and D. R. Tyler, Coord. Chem. Rev. 63, 217 (1985).Google Scholar
  35. 35.
    R. E. Wright (3M) Eur. Pat. Appl. 95, 269 (1983) [CA 100: 77464v].Google Scholar
  36. 36.
    R. E. Wright, in: Photochemistry and Photophysics of Coordination Compounds (H. Yersin and A. Vogler, eds.), pp. 335–338, Springer-Verlag, Berlin (1987).Google Scholar
  37. 37.
    H. M. Wagner and M. D. Purbrick, J. Photograph. Sci. 29, 230 (1981).Google Scholar
  38. 38.
    E. Irving, B. F. G. Johnson, and K. Meier (Ciba-Greigy) Eur. Pat. Appl. 94, 914 A2 (1983), B1 (1986) [CA 101: 15033r].Google Scholar
  39. 39.
    W. S. Anderson, J. Appl. Polym. Sci. 15, 2063 (1971).Google Scholar
  40. 40.
    D. L. S. Brown, J. A. Connor, B. Dobinson, and B. P. Stark, Angew. Makromol. Chem. 50, 9 (1976).Google Scholar
  41. 41.
    T. Masuda, K. Yamamoto, and T. Higashimura, Polymer 23, 1663 (1982).Google Scholar
  42. 42.
    T. Masuda, Y. Kuwane, and T. Higashimura, J. Polym. Sci. Polym. Chem. Ed. 20, 1043 (1982).Google Scholar
  43. 43.
    C. H. Bamford, K. G. Al-Lamee, and C. J. Konstantinov, J. Chem. Soc. Faraday Trans. 1, 73, 1406 (1977).Google Scholar
  44. 44.
    C. H. Bamford and K. G. Al-Lamee, J. Chem. Soc. Faraday Trans. 1, 80, 2175 (1984).Google Scholar
  45. 45.
    C. H. Bamford and K. G. Al-Lamee, J. Chem. Soc. Faraday Trans. 1, 80, 2187 (1984).Google Scholar
  46. 46.
    J. Ashworth, C. H. Bamford, and E. G. Smith, Pure Appl. Chem. 30, 25 (1972).Google Scholar
  47. 47.
    P. L. Egerton, A. Reiser, W. Shaw, and H. M. Wagner, J. Polym. Sci. Polym. Chem. Ed. 17, 3315 (1979).Google Scholar
  48. 48.
    C. H. Bamford, P. A. Crowe, and R. P. Wayne, Proc. R. Soc. London Ser. A 284, 455 (1965).Google Scholar
  49. 49.
    C. H. Bamford, P. A. Crowe, J. Hobbs, and R. P. Wayne, Proc. R. Soc. London Ser. A 292, 153 (1966).Google Scholar
  50. 50.
    C. H. Bamford and J. Paprotny, Polymer 13, 208 (1972).Google Scholar
  51. 51.
    C. H. Bamford and S. U. Mullik, Polymer 14, 38 (1973).Google Scholar
  52. 52.
    C. H. Bamford and S. U. Mullik, Polymer 17, 225 (1976).Google Scholar
  53. 53.
    C. H. Bamford and S. U. Mullik, J. Chem. Soc. Faraday Trans. 1, 69, 1127 (1973).Google Scholar
  54. 54.
    C. H. Bramford and S. U. Mullik, J. Chem. Soc. Faraday Trans. 1, 71, 625 (1975).Google Scholar
  55. 55.
    C. H. Bamford and S. U. Mullik, J. Chem. Soc. Faraday Trans. 1, 72, 368 (1976).Google Scholar
  56. 56.
    C. H. Bamford and S. U. Mullik, J. Chem. Soc. Faraday Trans. 1, 73, 1260 (1977).Google Scholar
  57. 57.
    C. H. Bamford and S. U. Mullik, Polymer 17, 94 (1976).Google Scholar
  58. 58.
    W. Strohmeier and C. Barbeau, Makromol. Chem. 81, 86 (1965).Google Scholar
  59. 59.
    D. J. Perettie, M. S. Paquette, R. L. Yates, and H. D. Gafney, NATO ASI Ser. B 105, 251 (1984).Google Scholar
  60. 60.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., p. 1224, Wiley-Interscience, New York (1988).Google Scholar
  61. 61.
    D. B. Porreau and G. L. Geoffroy, Adv. Organomet. Chem. 24, 249 (1985).Google Scholar
  62. 62.
    M. R. M. Bruce, A. Renter, and D. R. Tyler, J. Am. Chem. Soc. 106, 639 (1984).Google Scholar
  63. 63.
    J. C. W. Chien, J.-C. Wu, and M. D. Rausch, J. Am. Chem. Soc. 103, 1180 (1981).Google Scholar
  64. 64.
    E. A. Mintz and M. D. Rausch, J. Organomet. Chem. 171, 345 (1979).Google Scholar
  65. 65.
    D. G. H. Ballard and P. W. van Lienden, Makromol. Chem. 154, 177 (1972).Google Scholar
  66. 66.
    D. G. H. Ballard, J. V. Dawkins, J. W. Key, and P. W. van Lienden, Makromol. Chem. 165, 173 (1973).Google Scholar
  67. 67.
    P. W. N. M. van Leeuwen, H. van der Heijden, C. F. Roobeek, and J. H. G. Frijns, J. Organomet. Chem. 209, 169 (1981).Google Scholar
  68. 68.
    C. H. Bamford, R. J. Puddephatt, and D. M. Slater, J. Organomet. Chem. 159, C31 (1978).Google Scholar
  69. 69.
    M. D. Rausch, W. H. Boon, and E. A. Mintz, J. Organomet. Chem. 160, 81 (1978).Google Scholar
  70. 70.
    H.-S. Tung and C. H. Brubaker, Jr., Inorg. Chim. Acta 52, 197 (1981).Google Scholar
  71. 71.
    A. Roloff, K. Meier, and M. Riediker, Pure Appl. Chem. 58, 1267 (1986).Google Scholar
  72. 72.
    A. Roloff, K. Meier, and M. Riediker, in: Photochemistry and Photophysics of Coordination Compounds (H. Yersin and A. Vogler, eds.), pp. 317–322, Springer-Verlag, Berlin (1987).Google Scholar
  73. 73.
    M. Riediker, M. Roth, N. Buehler, and J. Berger (Ciba-Geigy) U. S. Patent 4, 910, 121 (1990).Google Scholar
  74. 74.
    B. Klingert, A. Roloff, B. Urwyler, and J. Wirz, Heb. Chim. Acta 71, 1858 (1988).Google Scholar
  75. 75.
    J. Finter, M. Riediker, O. Rohde, and B. Rotzinger, Makromol. Chem. Macromol. Symp. 24, 177 (1989).Google Scholar
  76. 76.
    T. J. Drahnak (3M) U. S. Patent 4, 510, 094 (1985) [CA 103: 387982] and 4, 600, 484 (1986).Google Scholar
  77. 77.
    L. D. Boardman and J. D. Oxman (3M) Eur. Pat. Appl. 358, 452 (1990) and U. S. Patent 4, 916, 169 (1990).Google Scholar
  78. 78.
    O. Hackelberg and A. Wojcicki, Inorg. Chim. Acta 44, L63 (1980).Google Scholar
  79. 79.
    L. N. Lewis and N. Lewis, J. Am. Chem. Soc. 108, 7228 (1986).Google Scholar
  80. 80.
    L. N. Lewis and R. J. Uriarte, Organometallics 9, 621 (1990).Google Scholar
  81. 81.
    C. Kutal, D. B. Yang, and G. Ferraudi, Inorg. Chem. 19, 2907 (1980).Google Scholar
  82. 82.
    R. L. Lintvedt, in: Concepts of Inorganic Photochemistry (A. W. Adamson and P. D. Fleischauer, eds.), p. 299, Wiley-Interscience, New York (1975).Google Scholar
  83. 83.
    K. Kaeriyama and Y. Shimura, Makromol. Chem. 167, 129 (1973).Google Scholar
  84. 84.
    C. H. Bamford and A. N. Ferrar, J. Chem. Soc. Faraday Trans. 1, 68, 1243 (1972).Google Scholar
  85. 85.
    E. Kriss, V. K. Bukhtiyarov, A. I. Kryukov, Z. A. Tkachenko, and D. I. Shvets, in: Teor. Prikl. Khim. β-Diketonatov Met. (in Russian) (V. I. Spitsyn and L. I. Martynenko, eds.), pp. 101-110, Nauka, Moscow [CA 104: 119788u (1985)].Google Scholar
  86. 86.
    S. M. Aliwi and C. H. Bamford, J. Chem. Soc. Faraday Trans. 1, 70, 2092 (1974).Google Scholar
  87. 87.
    S. M. Aliwi and C. H. Bamford, J. Chem. Soc. Faraday Trans. 1, 71, 52 (1975).Google Scholar
  88. 88.
    S. M. Aliwi and C. H. Bamford, J. Chem. Soc. Faraday Trans. 1, 71, 1733 (1975).Google Scholar
  89. 89.
    S. M. Aliwi and C. H. Bamford, J. Chem. Soc. Faraday Trans. 1, 73, 776 (1977).Google Scholar
  90. 90.
    K. Sahul, L. V. Natarajan, and Q. Anwaruddin, J. Polym. Sci. B 15, 605 (1977).Google Scholar
  91. 91.
    S. Mahaboob, L. V. Natarajan, and Q. Anwaruddin, J. Macromol. Sci. Chem. 12, 971 (1978).Google Scholar
  92. 92.
    H. Baumann, B. Strehmel, and H.-J. Timpe, Polym. Photochem. 4, 223 (1984).Google Scholar
  93. 93.
    R. Bhaduri and S. Aditya, Makromol. Chem. 178, 1385 (1977).Google Scholar
  94. 94.
    M. Asai and S. Tazuke, Macromolecules 6, 818 (1973).Google Scholar
  95. 95.
    K. Imamura, M. Asai, S. Tazuke, and S. Okamura, Makromol Chem. 174, 91 (1973).Google Scholar
  96. 96.
    M. Marek and L. Toman, J. Polym. Sci. Polym. Symp. 42, 339 (1973).Google Scholar
  97. 97.
    L. Toman, M. Marek, and J. Jokl, J. Polym. Sci. Polym. Chem. Ed. 12, 1897 (1974).Google Scholar
  98. 98.
    M. Marek, L. Toman, and J. Pilar, J. Polym. Sci. Polym. Chem. Ed. 13, 1565 (1975).Google Scholar
  99. 99.
    M. Marek, J. Polym. Sci. Polym. Symp. 56, 149 (1976).Google Scholar
  100. 100.
    J. Pilar, L. Toman, and M. Marek, J. Polym. Sci. Polym. Chem. Ed. 14, 2399 (1976).Google Scholar
  101. 101.
    L. Toman, J. Pilar, J. Spevacek, and M. Marek, J. Polym. Sci. Polym. Chem. Ed. 16, 2759 (1978).Google Scholar
  102. 102.
    M. Marek and L. Toman, Makromol. Chem. Rapid Commun. 1, 161 (1980).Google Scholar
  103. 103.
    L. Toman and M. Marek, Polymer 22, 1243 (1981).Google Scholar
  104. 104.
    T. Diem and J. P. Kennedy, J. Macromol. Sci. Chem. 12, 1359 (1978).Google Scholar
  105. 105.
    J. P. Kennedy and T. Diem, Polym. Bull. 1, 29 (1978).Google Scholar
  106. 106.
    A. Gandini, H. Cheradame, and P. Sigwalt, Polym. Bull. 2, 731 (1980).Google Scholar
  107. 107.
    J. C. D. Brand and W. Snedden, Trans. Faraday Soc. 53, 894 (1957).Google Scholar
  108. 108.
    A. N. Nesmeyanov, A. V. Vannikov, V. A. Zver’kov, L. V. Balabanova, G. A. Shvekhgeimer, and N. S. Kochetkova, Proc. Acad. Sci. USSR (Engl. Transl.) 240, 426 (1978).Google Scholar
  109. 109.
    O. Traverso and F. Scandola, Inorg. Chim. Acta 4, 493 (1970).Google Scholar
  110. 110.
    T. Akiyama, Y. Hoshi, S. Goto, and A. Sugimori, Bull. Chem. Soc. Jpn. 46, 1851 (1973).Google Scholar
  111. 111.
    K. Tsubakiyama and S. Fujisaki, J. Polym. Sci. B 10, 341 (1972).Google Scholar
  112. 112.
    K. Kaeriyama, J. Polym. Sci. Polym. Chem. Ed. 14, 1547 (1976).Google Scholar
  113. 113.
    K. Kaeriyama and Y. Shimura, J. Polym. Sci. Polym. Chem. Ed. 10, 2833 (1972).Google Scholar
  114. 114.
    R. W. Harrigan, G. S. Hammond, and H. B. Gray, J. Organomet. Chem. 81, 79 (1974).Google Scholar
  115. 115.
    Z.-T. Tsai and C. H. Brubaker, J. Organomet. Chem. 166, 199 (1979).Google Scholar
  116. 116.
    T. P. Gill and K. R. Mann, Inorg. Chem. 19, 3007 (1980).Google Scholar
  117. 117.
    A. M. McNair, J. L. Schrenk, and K. R. Mann, Inorg. Chem. 23, 2633 (1984).Google Scholar
  118. 118.
    J. L. Schrenk, M. C. Palazzotto, and K. R. Mann, Inorg. Chem. 22, 4047 (1983).Google Scholar
  119. 119.
    D. R. Chrisope, K. M. Park, and G. B. Schuster, J. Am. Chem. Soc. 111, 6195 (1989).Google Scholar
  120. 120.
    D. T. Chrisope and G. B. Schuster, Organometallics 8, 2737 (1989).Google Scholar
  121. 121.
    M. C. Palazzotto and W. A. Hendrickson (3M) Eur. Pat. Appl. 109, 851 A-2 (1984) [CA 101: 153584X].Google Scholar
  122. 122.
    K. Meier and H. Zweifel, J. Imag. Sci. 30, 174 (1986).Google Scholar
  123. 123.
    K. Meier and H. Zweifel, J. Radiat. Curing Oct., 26 (1986).Google Scholar
  124. 124.
    K. M. Park and G. B. Schuster, J. Organomet. Chem. 402(3), 355 (1991).Google Scholar
  125. 125.
    M. G. Evans, M. Santappa, and N. Uri, J. Polym. Sci. 7, 243 (1951).Google Scholar
  126. 126.
    M. K. Saha, A. R. Mukherjee, P. Ghosh, and S. R. Palit, J. Polym. Sci. C No. 16, 159 (1967).Google Scholar
  127. 127.
    S. Tazuke and S. Okamura, J. Polym. Sci. A-1 7, 851 (1969).Google Scholar
  128. 128.
    M. E. Woodhouse, F. D. Lewis, and T. J. Marks, J. Am. Chem. Soc. 104, 5586 (1982).Google Scholar
  129. 129.
    K. Venkatarao and M. Santappa, J. Polym. Sci. A-1 5, 637 (1967).Google Scholar
  130. 130.
    K. Venkatarao and M. Santappa, J. Polym. Sci. A-1 8, 3429 (1970).Google Scholar
  131. 131.
    L. V. Natarajan and M. Santappa, J. Polym. Sci. B 5, 357 (1967).Google Scholar
  132. 132.
    G. A. Delzenne, J. Polym. Sci. C No. 16, 1027 (1967).Google Scholar
  133. 133.
    L. V. Natarajan and M. Santappa, J. Polym. Sci. A-1 6, 3245 (1968).Google Scholar
  134. 134.
    H. Kothandaraman and M. Santappa, J. Polym. Sci. A-1 9, 1351 (1971).Google Scholar
  135. 135.
    M. Aslam, Q. Anwaruddin, and L. V. Natarajan, Polym. Photochem. 5, 41 (1984).Google Scholar
  136. 136.
    C. Namasivayam and P. Natarajan, J. Polym. Sci. Polym. Chem. Ed. 21, 1371 (1983).Google Scholar
  137. 137.
    C. Namasivayam and P. Natarajan, J. Polym. Sci. Polym. Chem. Ed. 21, 1385 (1983).Google Scholar
  138. 138.
    Y. Inaki, M. Takahashi, Y. Kameo, and K. Takemoto, J. Polym. Sci. Polym. Chem. Ed. 16, 399 (1978).Google Scholar
  139. 139.
    Y. Inaki, M. Takahashi, and K. Takemoto, J. Macromol Sci. Chem. A-9, 1133 (1975).Google Scholar
  140. 140.
    G. Muralidharan, Q. Anwaruddin, and L. V. Natarajan, J. Macromol. Sci. Chem. A-19, 501 (1983).Google Scholar
  141. 141.
    C. Kutal and C. G. Willson, J. Electrochem. Soc. 134, 2280 (1987).Google Scholar
  142. 142.
    C. Kutal and C. G. Willson, in: Photochemistry and Photophysics of Coordination Compounds (H. Yersin and A. Vogler, eds.), pp. 307–312, Springer-Verlag, Berlin (1987).Google Scholar
  143. 143.
    C. Kutal, S. K. Weit, S. A. MacDonald, and C. G. Willson, J. Coatings Technol 62, 63 (1990).Google Scholar
  144. 144.
    S. K. Weit and C. Kutal, Inorg. Chem. 29, 1455 (1990).Google Scholar
  145. 145.
    A. Adin and J. C. Wilson (Eastman Kodak) U. S. Patent 4, 239, 848 (1980) [CA 94: 130357y].Google Scholar
  146. 146.
    S. Hayase, Y. Onishi, S. Suzuki, and M. Wada, Macromolecules 18, 1799 (1985).Google Scholar
  147. 147.
    S. Hayase, Y. Onishi, K. Koshikiyo, S. Suzuki, and M. Wada, J. Polym. Sci. Polym. Chem. Ed. 20, 3155 (1982).Google Scholar
  148. 148.
    Y. Fukuchi, T. Takahashi, H. Noguchi, M. Saburi, and Y. Uchida, Macromolecules 20, 2317 (1987).Google Scholar
  149. 149.
    Y. Fukuchi, T. Takahashi, H. Noguchi, M. Saburi, and Y. Uchida, J. Polym. Sci. C 26, 401 (1988).Google Scholar
  150. 150.
    D. F. Eaton, Pure Appl. Chem. 56, 1191 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • D. Billy Yang
    • 1
  • Charles Kutal
    • 2
  1. 1.Chemical and Materials Science GroupLoctite CorporationNewingtonUSA
  2. 2.Department of ChemistryUniversity of GeorgiaAthensUSA

Personalised recommendations